首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly crosslinked narrow or monodisperse poly(ethyleneglycol dimethacryltae) (polyEGDMA) microspheres were prepared by distillation-precipitation polymerization in neat acetonitrile with 2,2′-azobis(2-methyl propinitrile) (AIBN) as an initiator. The polymer microspheres with clean surfaces due to the absence of any added stabilizer in the reaction system were formed simultaneously through a precipitation manner during the distillation of acetonitrile off the reaction system. The effects of the solvent, initiator concentration, monomer concentration and comonomer (divinylbenzene, DVB) fraction on the formation of the microspheres were investigated. Narrow- or monodisperse particles with spherical shape and smooth surface were obtained with diameters between 1.18 and 2.50 μm with monomer loading lower than 3.13 vol%. The surfaces of the microspheres became rougher, some elliptic particles and doublet or triplet appeared with the increase of monomer concentration (as high as 3.75 vol%). The yield of polymer microspheres was increased from 31% to 75% with the increase of EGDMA fraction from 0 to 100% when EGDMA was copolymerized with DVB. The resulting polymer microspheres were characterized with scanning electron microscope (SEM) and Fourier transform-IR spectra.  相似文献   

2.
Monodisperse poly (chloromethylstyrene‐co‐divinylbenzene) particles were firstly prepared by a two‐step swelling method. Based on this media, one kind of weak cation ion exchange packings was prepared. It was demonstrated that the prepared packings have comparative advantages for biopolymer separation with high column efficiency, low interstitial volume and low column backpressure, and have good resolution to proteins. The effects of salt concentration and pH of mobile phase on protein retentions were investigated. The properties of the weak cation ion exchange packings were evaluated by the unified retention model for mixed‐mode interaction mechanism in ion exchange and hydrophobic interaction chromatography.  相似文献   

3.
A number of polyacrylic (PAA) and polymethacrylic (PMAA) acids have been synthesized by living anionic polymerization of the monomeric tert-butyl esters followed by subsequent hydrolysis of the corresponding polyesters. The necessary precautions were taken in order to assure good molecular weight control, as well as high yields in the polymerization reactions. The intermediate and final polymers were characterized by gel permeation chromatography and NMR-H1 spectrometry.  相似文献   

4.
The synthesis and characterisation of segmented block copolymers based on mixtures of hydrophilic poly(ethylene oxide) and hydrophobic poly(tetramethylene oxide) polyether segments and monodisperse crystallisable bisester tetra-amide segments are reported. The PEO length was varied from 600 to 8000 g/mol and the PTMO length was varied from 650 to 2900 g/mol. The influence of the polyether phase composition on the thermal mechanical and the elastic properties of the resulting copolymers was studied.The use of high melting monodisperse tetra-amide segments resulted in a fast and almost complete crystallisation of the rigid segment. The copolymers had only one polyether glass transition temperature, which suggests that the amorphous polyether segments were homogenously mixed. Thermal analysis of the copolymers showed one polyether melting temperature that was lower than in the case of ideal co-crystallisation between the two polyether segments. However, at PEO or PTMO lengths larger than 2000 g/mol two polyether melting temperatures were observed. The copolymer with the best low temperature properties was based on a mixture of PEO and PTMO segments, both having a molecular weight of 1000 g/mol, at a weight ratio of 30/70.  相似文献   

5.
Several stationary phases were prepared by thermal immobilization of poly(methyloctylsiloxane) onto a silica surface using different amounts of poly(methyloctylsiloaxane), and different times and temperatures of immobilization to provide different carbon contents for the phases. The chromatographic properties were evaluated using the Tanaka test. Comparison of the results obtained with literature data using hierarchical cluster analysis showed dissimilarity with most of the commercial phases. Some basic pharmaceuticals, including six benzodiazepines were separated on one of the better PMOS phases.  相似文献   

6.
The monodisperse, porous poly(chloromethylstyrene-co-divinylbenzene) beads of 7.9 microm were prepared by a single-step swelling and polymerization method. The seed particles prepared by dispersion polymerization exhibited good absorption of the monomer phase. Based on this media, a weak cation-exchange (WCX) stationary phase for HPLC was synthesized by a new chemically modified method. The prepared resin has advantages of biopolymer separation, high column efficiency, low column backpressure, high protein mass recovery, and good resolution for proteins. The dynamic protein-loading capacity of the synthesized WCX packings was 18.2 mg/g. Five proteins were separated in 3.0 min using the synthesized WCX stationary phase. The experimental results show that the obtained WCX resin has very weak hydrophobicity. The WCX resin was also used for the rapid separation and purification of lysozyme from egg white in 5.0 min with only one step. The purity and specific bioactivity of the purified lysozyme were found to be more than 93% and 70 245 U/mg, respectively.  相似文献   

7.
The present investigation describes the synthesis and characterization of nanoparticles based on poly(acrylic acid) (PAA) intramolecularly cross-linked with diamine, 2,2′-(ethylenedioxy)bis(ethylamine), using water-soluble carbodiimide. The aqueous colloid dispersions of nanoparticles were clear or mildly opalescent depending on the ratio of cross-linking, pH of the solution, and the molecular weight of PAA, finding consistent with values of transmittance between 3% and 99%. The structure was determined by nuclear magnetic resonance spectroscopy, and the particle size was identified by dynamic light scattering (DLS) and transmission electron microscopy (TEM) measurements. It was found that particle size depends on the pH, and at a given pH, it was caused by the ratio of cross-linking and the molecular weight of PAA. Particle size measured by TEM varied in the range of 20 and 80 nm. In the swollen state, the average size of the particles measured by DLS was in the range of 35–160 nm.  相似文献   

8.
The blending of PLA with poly(butylene-adipate-co-terephthalate) (PBAT) is a promising strategy to achieve a toughened multiphase material. The blends ductility could be further improved through reactive compatibilization, i.e. inducing the formation of comb PLA-PBAT copolymers during the melt blending. In the present work a non-selective strategy was adopted which consisted in the use of a peroxide, 2,5-Dimethyl-2,5-di(tert-butylperoxy)hexane. The phase morphology development and the final properties (torque, fluidity in the melt, tensile behaviour, thermal and dynamical-mechanical features) of the blends were studied as a function of the peroxide concentration. The elongation at break was improved up to a maximum value thanks to this approach and a corresponding minimum was observed in the value of the dispersed phase diameter. A structural characterization of the macromolecules formed during the reactive process was attempted by using size exclusion chromatography of the blends and comparison with the pure polymers obtained by processing in the presence of the peroxide.  相似文献   

9.
The binding of a cationic surfactant, dodecylpyridinium (C12Py) chloride, with a low-charge-density poly (methacrylic acid) (PMA) was investigated in buffer solutions under the condition of constant pH. The binding isotherms with PMA consisted of two and three steps at a pH lower and higher than 3.2, respectively. Bindings in the first step were independent of pH and this step was considered to correspond to the solubilization of the hydrocarbon chains of C12Py into the nonpolar region of the compact form of PMA. This is the indication of the compact form from the binding isotherm. At pH higher than 3.2, the second step was discriminated and it depended on the pH. In the third step, a sharp rise in the degree of binding (β) was observed accompanying the solubilization of the precipitates of the PMA–C12Py complex. The binding with poly(acrylic acid) (PAA) and PMA in conventional unbuffered NaCl solutions was also examined and the pH profile of the solution during the binding process was determined. In the case of unbuffered NaCl solutions, the binding with PAA took place cooperatively at the critical association concentration (cac). The binding isotherm consisted of two steps and the pH decreased with the increase in β. The binding isotherm of PMA, on the other hand, consisted of three steps: the pH decreased slightly in the first step and considerably in the second step with the increase in β but it increased with β in the third step, exhibiting a pH minimum around 3.2. The binding in the first step coincided with that obtained in the buffered solutions. Linear relationships between β and the pH were found for both polymers. In the case of PMA, no cac was observed in both buffered and unbuffered NaCl solutions. Received: 24 January 2001 Accepted: 23 May 2001  相似文献   

10.
New polymer-clay nanocomposites composed of poly(lactic acid) and a novel organoclay based on cocamidopropylbetaine (CAB) and sodium montmorillonite (MMT) were prepared by solution casting and characterised by X-Ray Diffraction Analysis (XRDA), Transmission Electron Microscopy (TEM) and Thermogravimetric Analysis (TGA). A similar series of composites based on PLA and Cloisite 30B, a commercially available organoclay, were prepared for comparison. The thermal stability of the CAB-MMT organoclays decreased with increasing surfactant loading. Experimental organoclays with an organic content similar to that of the commercial organoclay were found to be of comparable thermal stability. XRDA analysis of the PLA-organoclay nanocomposites showed that PLA intercalated the gallery space of both types of organoclay to similar extents and the increased spacing was confirmed by TEM. The thermal stabilities of the PLA-organoclay composites based on CAB-MMT were higher than those based on the commercial organoclay.  相似文献   

11.
在水溶液中, 以乙烯基三乙氧基硅烷(VTES)为前驱体, 氨水(NH3 · H2O)为催化剂, 在表面活性剂十二烷基苯磺酸钠(SDBS)存在下, 通过溶胶-凝胶法成功合成了具有不同粒径、 高度单分散的聚乙烯基倍半硅氧烷(PVSQ)球形纳米粒子. 研究结果表明, 催化剂NH3 · H2O与表面活性剂SDBS的用量对PVSQ的粒径和粒径分布影响很大, 而前驱体VTES的用量对PVSQ的粒径无明显影响. 通过场发射扫描电子显微镜(FESEM)、 傅里叶变换红外光谱(FTIR)、 X射线光电子能谱(XPS)及热重(TG)分析对产物的形貌、 粒径和粒径分布、 结构及热性能进行了表征.  相似文献   

12.
A stationary phase based on poly(1-vinylimidazole)-grafted silica has been prepared by the surface radical chain-transfer reaction. The stationary phase was characterized by infrared spectra, X-ray photoelectron spectroscopy and elemental analysis. Chromatographic characteristics of the stationary phase were investigated in normal-phase HPLC. The results showed that both weak polar compounds (polycyclic aromatic hydrocarbons, dialkyl phthalates) and polar compounds (anilines, phenols) could be successfully separated on this stationary phase, implying better separation performance than blank silica and conventional aminopropyl-bonded silica under the same conditions. The excellent performance can be attributed to multiple interactions between surface modifier and the analytes that might include dipole, hydrogen bonding, H-π, electrostatic and inductive interactions.  相似文献   

13.
A novel poly(ether-imide)-based alkaline anion exchange membrane with no free base has been prepared and characterized for its ionic conductivity in water, which is a critical metric of its applicability in a liquid-fed direct methanol fuel cell. The poly(ether-imide)-based membranes were prepared by chloromethylation, quaternization and alkalization of commercial poly(ether-imide) and the derivatives were characterized by NMR. The chemical and thermal stabilities were investigated by measuring changes of ionic conductivities when the membranes were placed in various alkaline concentrations and temperatures for 24 h. The membranes were stable at all concentrations of KOH at room temperature, but not at elevated temperatures. The membranes were stable in 1.0 M KOH solution up to 80 °C without losing membrane integrity. The measured conductivity of the formed membrane ranged from 2.28 to 3.51 × 10−3 S/cm at room temperature. This preliminary study indicates that functionalized poly(ether-imide) has suitable conductivity suggesting that it can be used as an alkaline anion exchange membrane in fuel cell applications.  相似文献   

14.
Reactive monodisperse porous poly(chloromethylstyrene-co-styrene-co-divinylbenzene) beads have been prepared by a staged templated suspension polymerization method with different concentrations of linear polystyrene porogen and chloromethylstyrene in the polymerization mixture. The presence of a small amount of linear polystyrene in the polymerization mixture leads to a dramatic increase in both the pore size and the pore volume of the resulting beads. In contrast, addition of chloromethylstyrene leads to lower surface areas and smoother surfaces due to the reduced compatibility between the polystyrene porogen and the newly formed crosslinked chains. The modification of chloromethylstyrene beads by Gabriel synthesis to obtain aminated beads has also been studied. The final number of primary amino groups is related to the starting concentration of functional benzyl chloride moieties rather than to the porous properties. Both π-basic and π-acidic type chiral selectors, (R)-1-(1-naphthyl)-ethylamine and (R)-N-(3,5-dinitrobenzoyl)phenylglycine, respectively, have been attached to the amino functionalized beads, and the resulting chiral beads have been used in the model HPLC separations of enantiomers. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 2631–2643 1997  相似文献   

15.
The mutual influence of copper(II) cations and nonionic surfactant alkylmonoethers on their simultaneous sorption by the hydrogen form of Purolite C 106 polyacrylic acid functionalized cation exchanger was investigated considering the suitability for the prevention of environmental contamination. Sorption isotherms were measured and sorption equilibrium coefficients calculated. The modelling of copper(II) sorption and copper(II) carboxyl complex formation was carried out. The sorption of copper(II) proceeds predominantly by complex (ionic and coordinate) bonding followed by the change in pH, also by single coordinate bonding. The mutual action of copper(II) and alkylmonoethers leads to a decrease in the equilibrium sorption for both copper(II) and the surfactant. The sorption of copper(II) and alkylmonoethers could be applicable for the purification of sewage including copper plating rinsewater from both contaminants simultaneously for the control of copper(II) and the surfactant in sewage effluents. Received: 15 May 2000 Accepted: 9 May 2001  相似文献   

16.
Methyl 4-phenylthiophenyl sulfoxide is polymerized to poly(methyl-4-phenylthiophenylsulfonium) in poly(phosphoric acid) with a yield higher than 90%. The demethylation of poly(sufonium cation) is examined to control the composition ratio of the thiophenylene unit in the polycation. The polycation is soluble in common solvents due to the alternative structure of phenylene sufide and phenylenesulfonium cation and is easily converted to poly(phenylene sulfide) through the demethylation with a nucleophile. The poly(sulfonium cation) can be applicable as an alkylating agent for phenol, aniline and benzoic acid to the corresponding to anisole, N-methyl aniline, N,N-dimethyl aniline and benzoic methyl ester, respectively, with high conversion through the demethylation. These products can be isolated without a complicated purification because poly(phenylene sulfide) is precipitated in the mixture as the side product due to the poor solvent solubility.  相似文献   

17.
Poly(acrylic acid) (PAA) with different molecular weight and poly(vinylpyrrolidone) (PVP) were prepared by free radical polymerization using 2,2′-azoisobutyronitrile (AIBN) as initiator in anhydrous methanol for PAA, and in distilled water for PVP. Then, the complexation between PAA and PVP in aqueous solution was studied by UV transmittance measurement and fluorescence probe technique. The result shows that (1) at low pH, the formation of complexation between PAA and PVP bases on the intermacromolecular hydrogen bond and the composition of the formed complex is around 3:2 (the unit molar ratio of PAA to PVP) at pH 2.60 over the range of pH investigated. (2) The cooperative interaction through the formation of hydrogen bond among active sites plays an important role in complex formation, and depends on the pH of solution, the required minimum chain length of poly(acrylic acid). (3) The hydrogen bond is not affected by small molecular salt, which only affects those carboxylic groups without forming hydrogen bond on the PAA chain.  相似文献   

18.
A new hydrophilic strong anion-exchange (SAX) stationary phase for HPLC has been synthesized by chemical modification of macroporous 8.0-m monodisperse poly(glycidylmethacrylate-co-ethylenedimethacrylate) beads (PGMA/EDMA). The stationary phase was evaluated in detail to determine its ion-exchange properties, separability, reproducibility, hydrophilicity, and the effect of column loading and pH on the separation and retention of proteins. It was found to have an ion-exchange chromatographic (IEC) retention mechanism. The highest dynamic protein loading capacity of the synthesized SAX packing for BSA was 22.6 mg g–1. Five proteins were separated within 6.0 min using the synthesized SAX resin. The SAX resin was also used for rapid separation and purification of recombinant human stem cell factor (rhSCF) from a crude extract solution in only one step. The purity of the purified of rhSCF was >92.4%.  相似文献   

19.
To assess the compatibility of blends of synthetic poly(propylene carbonate) (PPC), with a natural bacterial poly(3-hydroxybutyrate) (PHB), a simple casting procedure of blend was used. poly(3-hydroxybutyrate)/poly(propylene carbonate) blends are found to be incompatible according to DSC and DMA analysis. In order to improve the compatibility and mechanical properties of PHB/PPC blends, poly(vinyl acetate) (PVAc) was added as a compatibilizer. The effects of PVAc on the thermal behavior, morphology, and mechanical properties of 70PHB/30PPC blend were investigated. The results show that the melting point and the crystallization temperature of PHB in blends decrease with the increase of PVAc content in blends, the loss factor changes from two separate peaks of 70PHB/30PPC blend to one peak of 70PHB/30PPC/12PVAc blend. It is also found that adding PVAc into 70PHB/30PPC blend can decrease the size of dispersed phase from morphology analysis. The result of tensile properties shows that PVAc can increase the tensile strength and Young’s modulus of 70PHB/30PPC blend, and both the elongation at break and the tensile toughness increase significantly with PVAc added into 70PHB/30PPC.  相似文献   

20.
The compatibility between poly(aspartic acid) and poly(ethylene glycol) for the formation of an interpolymer complex (IPC) was investigated by dynamic rheology and evaluation of zeta potential values. The homogeneity of the realized IPC was observed by near infrared chemical imagistic (NIR-CI) technique. The data were sustained and underlined by the assessment of the compatibility between the polymeric compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号