首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A scheme for deriving conditions for the nonlinear stability of an ideal or viscous incompressible steady flow in a two-dimensional channel that is periodic in one direction is described. A lower bound for the main factor ensuring the stability of the Reynolds–Kolmogorov sinusoidal flow with no-slip conditions (short wavelength stability) is improved. A condition for the stability of a vortex strip modeling Richtmyer–Meshkov fluid vortices (long wavelength stability) is presented.  相似文献   

2.
A solution of the plane linear problem of the oscillations of a horizontal circular cylinder in a uniform flow of a two-layer unbounded fluid is obtained using the method of multipole expansions. The direction of the flow is perpendicular to the cylinder axis. The whole cylinder Ges in the upper or lower layer. The fluid is assumed to be ideal and incompressible, the flow in each layer being a potential one. All the components of the radiation load (the apparent masses and damping coefficients) are determined and the regions of existence of radiation instability are found, depending on the flow velocity for a cylinder suspended by horizontal and vertical elastic links. By solving the integro-differential equation numerically the relative oscillations of the body under specified initial conditions are found.  相似文献   

3.
In this short note, we study the stability of flows of a fluid through porous media that satisfies a generalization of Brinkman’s equation to include inertial effects. Such flows could have relevance to enhanced oil recovery and also to the flow of dense liquids through porous media. In any event, one cannot ignore the fact that flows through porous media are inherently unsteady, and thus, at least a part of the inertial term needs to be retained in many situations. We study the stability of the rest state and find it to be asymptotically stable. Next, we study the stability of a base flow and find that the flow is asymptotically stable, provided the base flow is sufficiently slow. Finally, we establish results concerning the uniqueness of the flow under appropriate conditions, and present some corresponding numerical results.  相似文献   

4.
The motion of an incompressible viscous fluid in a thin layer between two circular cylinders, inserted into one another, with parallel axes is investigated. The cylinders rotate relative to one another about an axis parallel to the axes of the cylinders. The stream function of the unsteady plane-parallel flow that occurs is found by solving the boundary-value problem for the equations of hydrodynamic lubrication theory. The motion of the fluid particles is found from the solution of a non-autonomous time-periodic Hamiltonian system with a Hamiltonian equal to the stream function. The positions of fluid particles over time intervals that are a multiple of the period of rotation (Poincaré points) are calculated. The set of points is investigated using a Poincaré mapping on the phase flow. The observed transition to chaotic motion is related to the mixing of the fluid particles and is investigated both numerically and using a mapping, calculated with an accuracy up to the third power of the small eccentricity. The optimum mode of motion is observed when the area of the mixing (chaos) region reaches its highest value.  相似文献   

5.
The interfacial stability with mass transfer, surface tension, and porous media between two rigid planes will be investigated in the view of viscous potential flow analysis. A general dispersion relation is obtained. For Kelvin-Helmholtz instability, it is found that the stability criterion is given by a critical value of the relative velocity. On the other hand, in the absence of gravity the problem reduces to Brinkman model of the stability of two fluid layers between two rigid planes. Vanishing of the critical value of the relative velocity gives rise to a new dispersion relation for Rayleigh-Taylor instability. Formulas for the growth rates and neutral stability curve are also given and applied to air-water flows. The effects of viscosity, porous media, surface tension, and heat transfer are also discussed in relation to whether the system is potentially stable or unstable. The Darcian term, permeability’s and porosity effects are also concluded for Kelvin-Helmholtz and Rayleigh-Taylor instabilities. The relation between porosity and dimensionless relative velocity is also investigated.  相似文献   

6.
The stability of the stationary and oscillatory convective motions which develop in a vertical layer with periodically curved boundaries is studied for the case of longitudinal fluid injection. The amplitude of the boundary undulations and the flow of fluid along the layer are both assumed to be small, and methods of perturbation theory are used. The characteristic properties of the incremental spectrum of the spatially periodic motions are studied and the most dangerous types of perturbations as well as the forms of the stability regions are determined.

Theoretical investigations of the effect of spatial inhomogeneity of the boundary conditions on the stability of convection were sparse, and they deal mainly with horizontal layers of fluid /1–3/. Stationary, spatially periodic motions in a vertical layer with curved boundaries were investigated in /4/ for the case of free convection (when the flow was closed), and their stability was investigated in /5/. It was established that the presence of a small but finite flow of fluid along the layer leads to an increase in the number of different modes of flow, and to the appearance of non-stationary convective motions in the region near the threshold.  相似文献   


7.
The dependence of the viscosity of fluids on pressure has been well established by experiments and it needs to be taken into consideration in problems where there is a large variation of pressure in the flow domain. In this paper we consider the flow of a fluid in the annulus between two cylinders whose viscosity depends on the pressure. First we consider the steady flow in the annulus due to the rotation of one cylinder with respect to the other. Then we study the problem of flow in the annular region due to torsional and longitudinal oscillations of one cylinder with respect to the other. In both the problems considered the flow is found to be markedly different from that for the incompressible Navier–Stokes fluid with constant viscosity.  相似文献   

8.
This paper deals with the two-dimensional unsteady flow of a conducting viscous incompressible fluid between two parallel, porous plates, one of which is fixed, while the other is uniformly accelerated, when there is a transverse magnetic field. It is shown that, for a given Hartmann number M, as suction parameter β increases, the velocity at any point of the fluid increases, the Skin friction at the stationary plate increases, while that at the accelerated plate decreases. The results are true, as time T increases, for given Hartmann number M and the suction parameter β. The results also hold good for a given β, as M increases when the magnetic lines of force are fixed relative to the plate, while they are just opposite for the magnetic lines of force fixed relative to the fluid.  相似文献   

9.
The energy method is employed to investigate the stability of a steady convective flow in a heat generating fluid arising due to the combined effect of buoyancy, shear and pressure gradient. By introducing a suitable generalized energy functional and using energy inequalities sufficient conditions for the existence of such a flow are found. An analysis through the variational principles is then made to find sharper limits for nonlinear stability. Comparisons are made with linear results in the literature and it is shown that the linear theory fails to capture the physics of the onset of secondary flow.  相似文献   

10.
The linear hydrodynamical stability of two superimposed fluidsof different densities and viscosities flowing down an inclinedplane at the limit of zero Reynolds number is studied. Thereare two modes of disturbances at zero Reynolds number, one isthe free surface mode and the other is the interfacial mode.The free surface mode is shown to be always stable. The stabilityof the flow system is governed by the interfacial mode, andstability properties depend on the values of the ratios of densities,viscosities, and depths of the two fluid layers. Asymptoticproperties of stability for the limiting cases of long wavesand small depth ratio are examined and the corresponding neutralstability curves for the governing interfacial mode are provided.Growth rate curves against wavenumber for various sets of parametervalues are presented. The authors conclude with some remarkson how to obtain a more stable two-layer fluid system.  相似文献   

11.
This paper investigates the stability of a thin incompressible viscoelastic fluid designated as Walters’ liquid B″ during spin coating. The long-wave perturbation method is proposed to derive a generalized kinematic model of the film flow. The method of normal mode is applied to study the linear stability. The amplitude growth rates and the threshold conditions are characterized subsequently and summarized as the by-products of the linear solutions. Using the multiple scales method, the weakly nonlinear stability analysis is studied for the evolution equation of a film flow. The Ginzburg–Landau equation is determined to discuss the threshold conditions of the various critical flow states. The study reveals that the rotation number and the radius of the rotating circular disk generate the destabilizing effects. Moreover, the viscoelastic parameter k indeed plays a more significant role in destabilizing the film flow than a thin Newtonian fluid during spin coating [27].  相似文献   

12.
Some properties of unsteady unidirectional flows of a fluid of second grade are considered for flows impulsively started from rest by the motion of a boundary or two boundaries or by sudden application of a pressure gradient. Flows considered are: unsteady flow over a plane wall, unsteady Couette flow, flow between two parallel plates suddenly set in motion with the same speed, flow due to one rigid boundary moved suddenly and one being free, unsteady Poiseuille flow and unsteady generalized Couette flow. The results obtained are compared with those of the exact solutions of the Navier–Stokes equations. It is found that the stress at time zero on the stationary boundary for the flows generated by impulsive motion of a boundary or two boundaries is finite for a fluid of second grade and infinite for a Newtonian fluid. Furthermore, it is shown that for unsteady Poiseuille flow the stress at time zero on the boundary is zero for a Newtonian fluid, but it is not zero for a fluid of second grade.  相似文献   

13.
In this paper, we prove the linear stability of the pipe Poiseuille flow for general perturbations at high Reynolds number regime. This has been a long-standing problem since the experiments of Reynolds in 1883. Our work lays a foundation for the theoretical analysis of hydrodynamic stability of pipe flow, which is one of the oldest yet unsolved problems in fundamental fluid dynamics. © 2022 Wiley Periodicals LLC.  相似文献   

14.
We give sufficient conditions for asymptotic stability of a stationary solution to a flowing problem of a homogeneous incompressible fluid through a given planar domain. We consider a planar problem for the Euler equation and boundary conditions for the curl and the normal component of the velocity; moreover, the latter is given on the whole boundary of the flow domain and the curl is given only on the inlet part of the boundary. We establish asymptotic stability of a stationary flow (in linear approximation), assuming it to have no rest points and to satisfy some smallness condition which means that the perturbations leave the flow domain before they become to affect the main flow. In particular, we prove asymptotic stability for an arbitrary stationary flow in a rectangular canal close to the Couette flow without rest points. Moreover, we show that stability of the main flow in the L 2-norm under curl perturbations implies its stability in higher-order norms depending, for example, on the derivatives of the curl.  相似文献   

15.
We consider the stability of N-model systems that consist of two customer classes and two server pools. Servers in one of the pools can serve both classes, but those in the other pool can serve only one of the classes. The standard fluid models in general are not sufficient to establish the stability region of these systems under static priority policies. Therefore, we use a novel and a general approach to augment the fluid model equations based on induced Markov chains. Using this new approach, we establish the stability region of these systems under a static priority rule with thresholds when the service and interarrival times have phase-type distributions. We show that, in certain cases, the stability region depends on the distributions of the service and interarrival times (beyond their mean), on the number of servers in the system, and on the threshold value. We also show that it is possible to expand the stability region in these systems by increasing the variability of the service times (without changing their mean) while keeping the other parameters fixed. The extension of our results to parallel server systems and general service time distributions is also discussed.  相似文献   

16.
The present article contains the numerical solution for steady flow of a micropolar fluid between two porous plates using finite element method. The micropolar fluid fills the space inside the porous plates when the rate of suction at one boundary is equal to the rate of injection at the other boundary. The results for the fluid velocity and microrotation are graphically presented and the influence of micropolar fluid parameter K and parameter R is discussed. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

17.
Thomas Otto  Maurice Rossi  Thomas Boeck 《PAMM》2008,8(1):10635-10636
The initial stage of liquid atomization by a fast gas stream is considered by means of spatial stability analysis of two–phase shear layers. We solve the viscous linear stability problem for parallel flow modelled by error–function profiles. The unstable modes known from temporal theory are recovered in the convectively unstable case for fluid properties close to the air/water system. The most unstable wavelength depends only weakly on the absolute velocity relative to the laboratory system. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Summary The rotating flow of a viscous incompressible fluid between two disks is studied when there is a porous layer on the lower disk. The motion relative to a rotating frame is caused by a differential rotation of the disks. Generalised Darcy's law represents the flow. The numerical solution is obtained using a shooting method.  相似文献   

19.
本文提出了一种用于解决流体在球内以低马赫数流动问题的半离散Jacobi-球面调和谱格式,并证明了它的稳定性和收敛性.所用技巧也可应用于球形区域上其它非线性问题.  相似文献   

20.
For a single-walled carbon nanotube (CNT) conveying fluid, the internal flow is considered to be pulsating and viscous, and the resulting instability and parametric resonance of the CNT are investigated by the method of averaging. The partial differential equation of motion based on the nonlocal elasticity theory is discretized by the Galerkin method and the averaging equations for the first two modes are derived. The stability regions in frequency–amplitude plane are obtained and the influences of nonlocal effect, viscosity and some system parameters on the stability of CNT are discussed in detail. The results show that decrease of nonlocal parameter and increase of viscous parameter both increase the fundamental frequency and critical flow velocity; the dynamic stability of CNT can be enhanced due to nonlocal effect; the contributions of the fluid viscosity on the stability of CNT depend on flow velocity; the axial tensile force can only influence natural frequencies of the system however the viscoelastic characteristic of materials can enhance the dynamic stability of CNT. The conclusions drawn in this paper are thought to be helpful for the vibration analysis and structural design of nanofluidic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号