首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In Einstein gravity, gravitational potential goes as \(1/r^{d-3}\) in d non-compactified spacetime dimensions, which assumes the familiar 1 / r form in four dimensions. On the other hand, it goes as \(1/r^{\alpha }\), with \(\alpha =(d-2m-1)/m\), in pure Lovelock gravity involving only one mth order term of the Lovelock polynomial in the gravitational action. The latter offers a novel possibility of having 1 / r potential for the non-compactified dimension spectrum given by \(d=3m+1\). Thus it turns out that in the two prototype gravitational settings of isolated objects, like black holes and the universe as a whole – cosmological models, the Einstein gravity in four and mth order pure Lovelock gravity in \(3m+1\) dimensions behave in a similar fashion as far as gravitational interactions are considered. However propagation of gravitational waves (or the number of degrees of freedom) does indeed serve as a discriminator because it has two polarizations only in four dimensions.  相似文献   

2.
In this paper, we first generalize the formulation of entropic gravity to ( $n+1$ )-dimensional spacetime and derive Newton’s law of gravity and Friedmann equation in arbitrary dimensions. Then, we extend the discussion to higher order gravity theories and propose an entropic origin for Gauss–Bonnet gravity and more general Lovelock gravity in arbitrary dimensions. As a result, we are able to derive Newton’s law of gravitation as well as the corresponding Friedmann equations in these gravity theories. This procedure naturally leads to a derivation of the higher dimensional gravitational coupling constant of Friedmann/Einstein equation which is in complete agreement with the results obtained by comparing the weak field limit of Einstein equation with Poisson equation in higher dimensions. Our strategy is to start from first principles and assuming the entropy associated with the apparent horizon given by the expression previously known via black hole thermodynamics, but replacing the horizon radius $r_+$ with the apparent horizon radius $R$ . Our study shows that the approach presented here is powerful enough to derive the gravitational field equations in any gravity theory and further supports the viability of Verlinde’s proposal.  相似文献   

3.
In general metric theory of gravity, a gravitational wave is allowed to have up to six polarizations: two scalar and two vector modes in addition to tensor modes. In case the number of laser-interferometric gravitational wave telescopes is larger than the number of polarizations of a gravitational wave, all the polarizations can be individually reconstructed. Since it depends on theories of gravity which polarizations the gravitational waves have, the investigation of polarizations is important for the test of theories of gravity. In order to test the scalar–tensor gravity theory, one of important alternative theories of gravity, the scalar mode of GW170817 observed by LIGO Livingstone, Hanford and Virgo is reconstructed without prior information about any tensor–scalar gravity theories. The upper limit of the scalar mode in term of the band-limited root-sum-square of the amplitude is with the time window of 2 [s] and frequency window of ≈60–120 [Hz]. It is also studied how much the tensor modes are leaked into the reconstructed scalar mode, and it is found that the reconstructed scalar mode contains roughly 30% of energy leaked from the tensor modes.  相似文献   

4.
The temperature correction to the free energy of the gravitational field is considered which does not depend on the Planck energy physics. The leading correction may be interpreted in terms of the temperature-dependent effective gravitational constant Geff. The temperature correction to appears to be valid for all temperatures T?EPlanck. It is universal since it is determined only by the number of fermionic and bosonic fields with masses m?T, does not contain the Planck energy scale EPlanck which determines the gravitational constant at T=0, and does not depend on whether or not the gravitational field obeys the Einstein equations. That is why this universal modification of the free energy for gravitational field can be used to study thermodynamics of quantum systems in condensed matter (such as quantum liquids superfluid 3He and 4He), where the effective gravity emerging for fermionic and/or bosonic quasiparticles in the low-energy corner is quite different from the Einstein gravity.  相似文献   

5.
Fourth order derivative gravity in 3+13+1 dimensions is perturbatively renormalizable and is shown to describe a unitary theory of gravitons in a limited coupling parameter space. The running gravitational constant which includes graviton contribution is computed. Generically, gravitational Newton?s constant vanishes at short distances in this perturbatively renormalizable and unitary theory.  相似文献   

6.
We present analytic expressions for the gravitational potentials associated with triaxial ellipsoids, spheroids, spheres and disks in Weyl gravity. The gravitational potentials of these configurations in Newtonian gravity, i.e. the potentials derived by integration of the Poisson equation Green's function 1/|rr| over the volume of the configuration, are well known in the literature. Herein we present the results of the integration of |rr|, the Green's function associated with the fourth order Laplacian 4 of Weyl gravity, over the volume of the configuration to obtain the resulting gravitational potentials within this specific theory. As an application of our calculations, we solve analytically Euler's equations pertaining to incompressible rotating fluids to show that, as in the case of Newtonian gravity, homogeneous prolate configurations are not allowed within Weyl gravity either.  相似文献   

7.
In this paper we work in perturbative quantum gravity and we introduce a new effective model for gravity. Expanding the Einstein–Hilbert Lagrangian in graviton field powers we have an infinite number of terms. In this paper we study the possibility of an interpretation of more than three graviton interacting vertices as effective vertices of a most fundamental theory that contain tensor fields. Here we introduce a Lagrangian model named I.T.B. (intermediate-tensor-boson) where four gravitational pseudo-currents that contain two gravitons couple to three massive tensorial fields of ranks one, three and five, respectively. We show that the exchange of those massive particles reproduces, at low energy, the interacting vertices for four or more gravitons. In a particular version, the model contains a dimensionless coupling constant g and the mass M of the intermediate bosons as free parameters. The universal gravitational constant GN is shown to be proportional to the inverse of mass squared of mediator fields, particularly . A foresighting choice of the dimensionless coupling constant could lower the energy scale where quantum gravity aspects show up.  相似文献   

8.
We study thermodynamics of black hole solutions in Lanczos–Lovelock anti-de Sitter gravity in \(d+1\) dimensions coupled to nonlinear electrodynamics and a Stückelberg scalar field. This class of theories is used in the context of gauge/gravity duality to describe a high-temperature superconductor in \(d\) dimensions. A larger number of coupling constants in the gravitational side is necessary to widen the domain of validity of physical quantities in dual quantum field theory (QFT). We regularize the gravitational action and find the finite conserved quantities for a planar black hole with scalar hair. Then we derive the quantum statistical relation in the Euclidean sector of the theory, and we obtain the exact formula for the free energy of the superconductor in the holographic QFT. Our result is analytic and it includes the effects of backreaction of the gravitational field. We further discuss on how this formula could be used to analyze second order phase transitions through the discontinuities of the free energy, in order to classify holographic superconductors in terms of the parameters in the theory.  相似文献   

9.
We propose an approach for constructing spatial slices of (3+1) spacetimes with cosmological constant but without a matter content, which yields (2+1) vacuum with solutions. The reduction mechanism from (3+1) to (2+1) gravity is supported on a criterion in which the Weyl tensor components are required to vanish together with a dimensional reduction via an appropriate foliation. By using an adequate reduction mechanism from the Plebaski–Carter[A] solution in (3+1) gravity, the (2+1) BTZ solution can be obtained.  相似文献   

10.
It is shown that Friedmann–Robertson–Walker (FRW) cosmological models coupled to a single scalar field and to a perfect fluid fitting a wide class of matter perfect fluid state equations, determined in (3+1) dimensional gravity can be related to their (2+1) cosmological counterparts, and vice-versa, by using simple algebraic rules relating gravitational constants, state parameters, perfect fluid and scalar field characteristics. It should be pointed out that the demonstration of these relations for the scalar fields and potentials does not require the fulfilment of any state equation for the scalar field energy density and pressure. As far as to the perfect fluid is concerned, one has to demand the fulfilment of state equations of the form p+ = f(). If the considered cosmologies contain the inflation field alone, then any (3+1) scalar field cosmology possesses a (2+1) counterpart, and vice-versa. Various families of solutions are derived, and we exhibited their correspondence; for instance, solutions for pure matter perfect fluids and single scalar field fulfilling linear state equations, solutions for scalar fields coupled to matter perfect fluids, a general class of solutions for scalar fields subjected to a state equation of the form p + = are reported, in particular Barrow–Saich, and Barrow–Burd–Lancaster–Madsen solutions are exhibited explicitly, and finally perfect fluid solutions for polytropic state equations are given.  相似文献   

11.
A nonlocal form of the effective gravitational action could cure the unboundedness of euclidean gravity with Einstein action. On sub-horizon length scales the modified gravitational field equations seem compatible with all present tests of general relativity and post-Newtonian gravity. They induce a difference in the effective Newtonian constant between regions of space with vanishing or nonvanishing curvature scalar (or Ricci tensor). In cosmology they may lead to a value < 1 for the critical density after inflation. The simplest model considered here appears to be in conflict with nucleosynthesis, but generalizations consistent with all cosmological observations seem conceivable.  相似文献   

12.
The classical treatment of quasi-spherical vesicle undulations has, in the present work, been reviewed and extended to systems, which are affected by a gravitational field caused by a density difference across the membrane. The effects have been studied by the use of perturbation theory leading to corrections to the mean shape and the fluctuation correlation matrix. These corrections have been included in an analytical expression for the flicker spectrum to probe how the experimentally accessible spectrum changes with gravity. The results are represented in terms of the gravitational parameter, g 0 = ΔρgR 4/κ. The contributions from gravity are in most experimental situations small and thus negligible, but for values of g0 above a certain limit, the perturbational corrections must be included. Expressions for the relative error on the flicker spectrum have been worked out, so that it is possible to define the regime where gravity is negligible. An upper limit of g0 has also been identified, where the error in all modes of the flicker spectrum is significant due to distortion of the mean shape. Received 9 July 2002 and Received in final form 15 November 2002 RID="a" ID="a"e-mail: jonas@kemi.dtu.dk RID="b" ID="b"e-mail: ipsen@memphys.sdu.dk  相似文献   

13.
We obtain the free energy and thermodynamic geometry of holographic superconductors in \(2+1\) dimensions. The gravitational theory in the bulk dual to this \(2+1\)-dimensional strongly coupled theory lives in the \(3+1\) dimensions and is that of a charged AdS black hole together with a massive charged scalar field. The matching method is applied to obtain the nature of the fields near the horizon using which the holographic free energy is computed through the gauge/gravity duality. The critical temperature is obtained for a set of values of the matching point of the near horizon and the boundary behaviour of the fields in the probe limit approximation which neglects the back reaction of the matter fields on the background spacetime geometry. The thermodynamic geometry is then computed from the free energy of the boundary theory. From the divergence of the thermodynamic scalar curvature, the critical temperature is obtained once again. We then compare this result for the critical temperature with that obtained from the matching method.  相似文献   

14.
The conventional perturbative approach to quantum gravity is based on the expansion in powers of k, wherek denotes the Einstein gravitational constant. The introduction of a square root is due to the unreasonable postulate that thek0 limit of the gravitational field is ac-number. It is more natural that it is aq-number, which can be determined explicitly by the theory, and then the expansion becomes that in powers ofk but not of k. Thus the nonrenormalizability of Einstein gravity should be completely reconsidered in the light of the new expansion.  相似文献   

15.
We present a new point of view on the quantization of the massive gravitational field, namely we use exclusively the quantum framework of the second quantization. The Hilbert space of the many-gravitons system is a Fock space F+ (Hgraviton) where the one-particle Hilbert space Hgraviton carries the direct sum of two unitary irreducible representations of the Poincaré group corresponding to two particles of mass m > 0 and spins 2 and 0, respectively. This Hilbert space is canonically isomorphic to a space of the type Ker(Q)/Im(Q) where Q is a gauge charge defined in an extension of the Hilbert space Hgraviton generated by the gravitational field h and some ghosts fields u, (which are vector Fermi fields) and v (which is a vector Bose field).Then we study the self interaction of massive gravity in the causal framework. We obtain a solution which goes smoothly to the zero-mass solution of linear quantum gravity up to a term depending on the bosonic ghost field. This solution depends on two real constants as it should be; these constants are related to the gravitational constant and the cosmological constant. In the second order of the perturbation theory we do not need a Higgs field, in sharp contrast to Yang-Mills theory.  相似文献   

16.
Minimal and nonminimal gravitational couplings are discussed in terms of the translation gauge fields b k , which are necessary to describe the gravitational interaction of the spin 1/2 field. For this purpose we carry out the extension of the conventional tetrad formalism of general relativity. Our general framework contains four arbitrary parameters; one of them represents the asymmetry of the affine connection (or equivalently that of the energymomentum tensor) and the others measure possible deviations from Einstein's gravitational Lagrangian, which will be responsible for spin effects. We also discuss the physical meaning of the invariance requirement with respect to the Poincaré gauge transformation that uniquely leads us within the present framework to Einstein's theory of gravity.An abridged version of the present paper was presented at the 6th International Conference on Gravitation and Relativity at Copenhagen, July 1972.Y. Nishina Memorial Foundation Fellow, on leave of absence from the University of Tokyo, Japan.  相似文献   

17.
The principle of equivalence implies that gravity affects the light cone (causal) structure of the space-time. It follows that there will exist observers (in any space-time) who do not have access to regions of space-time bounded by horizons. Since physical theories in a given coordinate system must be formulated entirely in terms of variables which an observer using that coordinate system can access, gravitational action functional must contain a foliation dependent surface term which encodes the information inaccessible to the particular observer. I show that: (i) It is possible to determine the nature of this surface term from general symmetry considerations and prove that the entropy of any horizon is proportional to its area. (ii) The gravitational action can be determined using a differential geometric identity related to this surface term. The dynamics of spacetime is dictated by the nature of quantum entanglements across the horizons and the flow of information, making gravity inherently quantum mechanical at all scales. (iii) In static space-times, the action for gravity can be given a purely thermodynamic interpretation and the Einstein equations have a formal similarity to laws of thermodynamics. (iv) The horizon area must be quantized with A horizon = (8 G /c 3)m with m = 1, 2, in the semi-classical limit.  相似文献   

18.
We describe an experimental technique for detecting extremely low-frequency pulses of gravitational radiation ( GW 1–10 mHz) originating from collapsing supermassive objects (M 106–107 m ) occurring anywhere in the universe. Our technique is the natural outgrowth of a previous gravitational space mission. The novelty of our approach is in placing a highly stable hydrogen maser onboard a deep-space probe that controls a transmitter sending signals to earth. The spacecraft also includes a doppler transponder operating in the conventional two-way mode. Doppler tracking using simultaneously acquired one- and two-way information both on the spacecraft and at the earth station provides four time-records of frequency fluctuations. A single gravitational disturbance manifests itself as a uniquely determined pulse sequence in the two or more data sets whose amplitudes and arrival times depend on a single parameter. The repetition of the signal and the noises in the data can be used in a filtering scheme to improve the amplitude sensitivity by a factor of about 6 in amplitude (36 in energy). We believe the most likely of these gravitational pulse events occurring frequently enough to be detected (more than once per year) will come from the formation of black holes in the cores of ordinary spiral galaxies. We propose a technologically feasible and realistic space mission, using the above technique, to measure two aspects of gravitation with the same experimental equipment. The spaceflight begins in a highly eccentric earth orbit to measure the gravitational red shift and the second-order doppler effects to an accuracy of 5 parts in 106; at this level significant new tests of nonmetric theories of gravity are possible. Later, the spacecraft is sent into a heliocentric orbit to distances beyond 6 AU to search for gravitational radiation.  相似文献   

19.
The gravity theories of Newton and Einstein are giving opposite sentences about the velocity of light in gravitational field. According to the Newtonian theory the velocity v in gravitational field is greater than the velocity c in a field-free space: v > c. According to general relativity theory we have a smaller velocity: v < c. For a spherical symmetric gravitational field Newton's theory gives \documentclass{article}\pagestyle{empty}\begin{document}$ v \approx c\left({1 + \frac{{fM}}{{c^2 r}}} \right) $\end{document} but Einstein's theory of 1911 gives \documentclass{article}\pagestyle{empty}\begin{document}$ v \approx c\left({1 - \frac{{fM}}{{c^2 r}}} \right) $\end{document} and general relativity gives \documentclass{article}\pagestyle{empty}\begin{document}$ v \approx c\left({1 - 2\frac{{fM}}{{rc^2 }}} \right) $\end{document}. Therefore, the radarecho-measurations of Shapiro are the experimentum crucis for Einstein's against Newton's theory.  相似文献   

20.
In a recent paper David Garfinkle and Robert Wald argue that it is possible to build a box which will confine and thermalize gravitational radiation. Using the results of their calculations I will show that the Garfinkle-Wald (GW) box will fail to isolate and thermalize gravitational radiation in a universe with external gravitational radiation. The absence of alocal equilibrium distribution of gravitational radiation in this model is further evidence that an operational interpretation of a quantum theory of gravity based on General Relativity and traditional matter couplings does not exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号