首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 391 毫秒
1.
Wettability of biomaterials surfaces and protein-coated substrates is generally characterized with the sessile drop technique using polar and apolar liquids. This procedure is often performed in air, which does not reflect the physiological conditions. In this study, liquid/liquid contact angle measurements were carried out to be closer to cell culture conditions. This technique allowed us to evaluate the polar contribution to the work of adhesion between an aqueous medium and four selected biomaterials widely used in tissue culture applications: bacteriological grade polystyrene (PS), tissue culture polystyrene (tPS), poly(2-hydroxyethyl methacrylate) film (PolyHEMA), and hydroxypropylmethylcellulose-carboxymethylcellulose bi-layered Petri dish (CEL). The contributions of polar interactions were also estimated on the same biomaterials after fibronectin (Fn) adsorption. The quantity of Fn adsorbed on PS, tPS, PolyHEMA and CEL surfaces was evaluated by using the fluorescein-labeled protein. PolyHEMA and CEL were found to be hydrophilic, tPS was moderately hydrophilic and PS was highly hydrophobic. After Fn adsorption on PS and tPS, a significant increase of the surface polar interaction was observed. On PolyHEMA and CEL, no significant adsorption of Fn was detected and the polar interactions remained unchanged. Finally, an inverse correlation between the polarity of the surfaces and the quantity of adsorbed Fn was established.  相似文献   

2.
A quartz crystal microbalance with dissipation (QCM-D) technique was employed to detecting the protein adsorption and subsequent osteoblast-like cell adhesion to hydroxyapatite (HAp) nanocrystals. The interfacial phenomena with the preadsorption of three proteins (albumin (BSA), fibronectin (Fn), and collagen (Col)), the subsequent adsorption of fetal bovine serum (FBS), and the adhesion of the cells were investigated. The QCM-D measured the frequency shift (Δf) and dissipation energy shift (ΔD), and the viscoelastic properties of the adlayers were evaluated using ΔD-Δf plot and Voigt-based viscoelastic model. The Col adsorption significantly showed higher Δf, ΔD, elasticity, and viscosity values as compared to the BSA and Fn adsorption, and the subsequent FBS adsorption depended on the preadsorbed proteins. The ΔD-Δf plot of the cell adhesion also showed a different behavior depending on the surfaces, and the Fn- and Col-modified surfaces showed the rapid mass and ΔD changes by forming the viscous interfacial layers with cell adhesion, indicating that the processes were affected by the cellular reaction through the extracellular matrix (ECM) proteins. The confocal laser scanning microscope images of adherent cells showed a different morphology and pseudopod on the surfaces. The cells adhered to the surfaces modified with the Fn and Col had significantly uniaxially expanded shapes and fibrous pseudopods, and those modified with the BSA had a round shape. Therefore, the different cell-protein interactions would cause the arrangement of the ECM and the cytoskeleton changes at the interfaces, and these phenomena were successfully detected by the QCM-D and Voigt-based model.  相似文献   

3.
Albumin is commonly applied for blocking the adsorption of other proteins and to prevent the nonspecific adhesion of cells to diverse artificial substrata. Here we address the question of how effective these albumin properties are--by investigating unmodified and sulfonated polystyrene substrata with distinctly different wettabilities. As clearly shown with (125)I-radioisotopic assays, above a concentration of 10-20 μg/mL, the efficiency of bovine serum albumin (BSA) adsorption became markedly higher on the sulfonated surface than on the unmodified one. This study was assisted with the atomic force microscopy. On the unmodified surface, BSA, adsorbed from sufficiently concentrated solutions, formed a monolayer, with occasional intrusions of multilayered patches. Conversely, the arrangement of BSA on the sulfonated surface was chaotic; the height of individual molecules was lower than on the unmodified polystyrene. Importantly, the adhesion study of LNCaP and DU145 cells indicated that both surfaces, subjected to the prior BSA adsorption, did not completely loose their cell-adhesive properties. However, the level of adhesion and the pattern of F-actin organization in adhering cells have shown that cells interacted with unmodified and sulfonated surfaces differently, depending on the arrangement of adsorbed albumin. These results suggest the presence of some bare substratum area accessible for cells after the albumin adsorption to both types of investigated surfaces.  相似文献   

4.
Chemical homogeneous poly(dimethylsiloxane) (PDMS) surface with dot-like protrusion pattern was used to investigate the individual effect of surface microtopography on protein adsorption and subsequent biological responses. Fibrinogen (Fg) and fibronectin (Fn) were chosen as model proteins due to their effect on platelet and cell adhesion, respectively. Fg labeled with 125I and fluorescein isothiocyanate (FITC) was used to study its adsorption on flat and patterned surfaces. Patterned surface has a 46% increase in the adsorption of Fg when compared with flat surface. However, the surface area of the patterned surface was only 8% larger than that of the flat surface. Therefore, the increase in the surface area was not the only factor responsible for the increase in protein adsorption. Clear fluorescent pattern was visualized on patterned surface, indicating that adsorbed Fg regularly distributed and adsorbed most on the flanks and valleys of the protrusions. Such distribution and local enrichment of Fg presumably caused the specific location of platelets adhered from platelet-rich plasma (PRP) and flowing whole blood (FWB) on patterned surface. Furthermore, the different combination of surface topography and pre-adsorbed Fn could influence the adhesion of L929 cells. The flat surface with pre-adsorbed Fn was the optimum substrate while the virgin patterned surface was the poor substrate in terms of L929 cells spread.  相似文献   

5.
Pulcherrimin is a secondary metabolite of yeasts belonging to the Metschnikowia pulcherrima clade, and pulcherrimin formation is responsible for the antimicrobial action of its producers. Understanding the environmental function of this metabolite can provide insight into various microbial interactions and enables the efficient development of new effective bioproducts and methods. In this study, we evaluated the antimicrobial and antiadhesive action of yeast pulcherrimin, as well as its protective properties under selected stressful conditions. Classical microbiological plate methods, microscopy, and physico-chemical testing were used. The results show that pure pulcherrimin does not have antimicrobial properties, but its unique hydrophilic nature may hinder the adhesion of hydrophilic bacterial cells to abiotic surfaces. Pulcherrimin also proved to be a good cell protectant against UV–C radiation at both high and low temperatures.  相似文献   

6.
Capillary electrophoresis (CE) is an important tool of chemical cytometry. Whole-cell analysis using CE starts with cell injection into the capillary by either siphoning or electroosmosis. However, strong adherence of the cell to the support surface can prevent efficient cell injection and lead to irreproducible analysis. Here we evaluated several surfaces as potential cell supports for HT29 cells (human colon adenocarcinoma). These cells strongly adhered to the surface of untreated glass or polystyrene. Hydrophobic coating with dimethyldichlorosilane (DMS) or Sigmacote did not significantly reduce cell adhesion. In contrast, cell adhesion was reduced significantly when the surface was modified with hydrophilic polymers (hydrogels) such as poly(2-hydrohyethyl methacrylate) (PHEMA) and polyvinyl alcohol (PVA). In addition to their pronounced antiadhesive properties, PHEMA and PVA coatings were the most biocompatible (had highest survival of cells in contact with surface). Hydrogel-coated polystyrene plates were tested as a commercial alternative to hydrogel-coated glass slides. The cell adhesive properties of such plates were similar to those of PHEMA and PVA. However, the biocompatibility of the plates was lower than that of the other surfaces tested. Moreover, in contrast to PHEMA- and PVA-coated glass slides, the plates were sensitive to UV light and therefore should not be used when fluorescent image microscopy with UV excitation precedes CE. The analyses of the data obtained showed that PHEMA- and PVA-coated glass slides were the most suitable cell supports for cell injection into the capillary.  相似文献   

7.
The uncontrolled accumulation of biological materials on the surface of medical devices through protein adsorption or cell adhesion causes adverse biological reactions in the living host system, leading to complications. In this study, poly(ethylene glycol) (PEG) is successfully grafted onto polyurethane (PU) surfaces by using a new strategy through a simple and efficient transurethanization reaction. The PEG hydroxyl group is deprotonated and then reacted with the PU surface to provide antiadhesive hydrophilic surfaces in a single step. Surface analysis techniques proved the grafting to be efficient and the formation of a hydrophilic polymeric layer at the surface of PU. Biological assays showed that the surface modification induced lower protein adsorption, cell, platelet, and bacterial adhesion than untreated surfaces, showing a potential for biomedical applications.  相似文献   

8.
This work describes the superlow fouling properties of glass slides grafted with zwitterionic polymers to highly resist the adsorption of proteins and the adhesion of mammalian cells. Glass slides were first silanized using 2-bromo-2-methyl-N-3-[(triethoxysilyl)propyl]propanamide (BrTMOS). Two zwitterionic polymers, poly(sulfobetaine methacrylate) (polySBMA) and poly(carboxybetaine methacrylate) (polyCBMA), were then grafted from the silanized glass substrates using the atom-transfer radical polymerization (ATRP) method. X-ray photoelectron spectroscopy (XPS) was used to analyze the surfaces of the silanized glass substrates and the substrates grafted with the polymers. An enzyme-linked immonosobrbent assay (ELISA) using polyclonal antibodies was used to measure fibrinogen adsorption on these surfaces. The surfaces with polySBMA or polyCBMA layers were shown to reduce fibrinogen adsorption to a level comparable with that of adsorption on poly(ethylene glycol)-like films. Bovine aortic endothelial cells (BAECs) were seeded on these surfaces. The attachment and spreading of the cells were observed only on unpolymerized glass surfaces. This work further demonstrates that zwitterionic polymers highly resist nonspecific protein adsorption and cell adhesion and provides an effective method to modify glass slides or other oxide surfaces to achieve superlow fouling.  相似文献   

9.
The interaction of the proteins bovine serum albumin (BSA), lysozyme (Lys), lactoferrin (Lf), and fibronectin (Fn) with surfaces of protein-resistant poly(ethylene oxide) (PEO) and protein-adsorbing poly(acrylic acid) (PAA) fabricated by plasma-enhanced chemical vapor deposition has been studied with quartz crystal microbalance with dissipation monitoring (QCM-D). We focus on several parameters which are crucial for protein adsorption, i.e., the isoelectric point (pI) of the proteins, the pH of the solution, and the charge density of the sorbent surfaces, with the zeta-potential as a measure for the latter. The measurements reveal adsorption stages characterized by different segments in the plots of the dissipation vs frequency change. PEO remains protein-repellent for BSA, Lys, and Lf at pH 4-8.5, while weak adsorption of Fn was observed. On PAA, different stages of protein adsorption processes could be distinguished under most experimental conditions. BSA, Lys, Lf, and Fn generally exhibit a rapid initial adsorption phase on PAA, often followed by slower processes. The evaluation of the adsorption kinetics also reveals different adsorption stages, whereas the number of these stages does not always correspond to the structurally different phases as revealed by the D- f plots. The results presented here, together with information obtained in previous studies by other groups on the properties of these proteins and their interaction with surfaces, allow us to develop an adsorption scenario for each of these proteins, which takes into account electrostatic protein-surface and protein-protein interaction, but also the pH-dependent properties of the proteins, such as shape and exposure of specific domains.  相似文献   

10.
Staphylococcus epidermidis is among the most commonly isolated microbes from medical implant infections, particularly in the colonization of blood-contacting devices. We explored the relationships between surface wettability and root-mean-square roughness (Rq) on microbial adhesive strength to a substrate. Molecular-level interactions between S. epidermidis and a variety of chemically and texturally distinct model substrata were characterized using a cellular probe and atomic force microscopy (AFM). Substrata included gold, aliphatic and aromatic self-assembled monolayers, and polymeric and proteinaceous materials. Substrate hydrophobicity, described in terms of the water contact angle, was an insufficient parameter to explain the adhesive force of the bacterium for any of the surfaces. Correlations between adhesion forces and Rq showed weak relationships for most surfaces. We used an alternate methodology to characterize the texture of the surface that is based on a fractal tiling algorithm applied to images of each surface. The relative area as a function of the scale of observation was calculated. The discrete bonding model (DBM) was applied, which describes the area available for bonding interactions over the full range of observational scales contained in the measured substrate texture. Weak negative correlations were obtained between the adhesion forces and the area available for interaction, suggesting that increased roughness decreases bacterial adhesion when nano- to micrometer scales are considered. We suggest that modification of the DBM is needed in order to include discontinuous bonding. The adhesive strength is still related to the area available for bonding on a particular scale, but on some very fine scales, the bacteria may not be able to conform to the valleys or pits of the substrate. Therefore, the bonding between the bacterium and substrate becomes discontinuous, occurring only on the tops of ridges or asperities.  相似文献   

11.
The deposition of a multilayered fibrinogen matrix on various surfaces results in a dramatic reduction of integrin-mediated cell adhesion and outside-in signaling in platelets and leukocytes. The conversion of a highly adhesive, low-density fibrinogen substrate to the nonadhesive high-density fibrinogen matrix occurs within a very narrow range of fibrinogen coating concentrations. The molecular events responsible for this transition are not well understood. Herein, single-cell and molecular force spectroscopy were used to determine the early steps in the formation of nonadhesive fibrinogen substrates. We show that the adsorption of fibrinogen in the form of a molecular bilayer coincides with a several-fold reduction in the adhesion forces generated between the AFM tip and the substrate as well as between a cell and the substrate. The subsequent deposition of new layers at higher coating concentrations of fibrinogen results in a small additional decrease in adhesion forces. The poorly adhesive fibrinogen bilayer is more extensible under an applied tensile force than is the surface-bound fibrinogen monolayer. Following chemical cross-linking, the stabilized bilayer displays the mechanical and adhesive properties characteristic of a more adhesive fibrinogen monolayer. We propose that a greater compliance of the bi- and multilayer fibrinogen matrices has its origin in the interaction between the molecules forming the adjacent layers. Understanding the mechanical properties of nonadhesive fibrinogen matrices should be of importance in the therapeutic control of pathological thrombosis and in biomaterials science.  相似文献   

12.
Fibronectin (Fn), a high molecular weight glycoprotein, is a central element of extracellular matrix architecture that is involved in several fundamental cell processes. In the context of bone biology, little is known about the influence of the mineral surface on fibronectin supramolecular assembly. We investigate fibronectin morphological properties induced by its adsorption onto a model mineral matrix of hydroxyapatite (HA). Fibronectin adsorption onto HA spontaneously induces its aggregation and fibrillation. In some cases, fibronectin fibrils are even found connected into a dense network that is close to the matrix synthesized by cultured cells. Fibronectin adsorption-induced self-assembly is a time-dependant process that is sensitive to bulk concentration. The N-terminal domain of the protein, known to be implicated in its self-association, does not significantly inhibit the protein self-assembly while increasing ionic strength in the bulk alters both aggregation and fibrillation. The addition of a non-ionic surfactant during adsorption tends to promote aggregation with respect to fibrillation. Ultimately, fibronectin fibrils appear to be partially structured like amyloid fibrils as shown by thioflavine T staining. Taken together, our results suggest that there might be more than one single organization route involved in fibronectin self-assembly onto hydroxyapatite. The underlying mechanisms are discussed with respect to Fn conformation, Fn/surface and Fn/Fn interactions, and a model of fibronectin fibrillogenesis onto hydroxyapatite is proposed.  相似文献   

13.
The build-up of biofilms on metals surfaces may lead to severe corrosion, especially in the presence of sulphate-reducing bacteria (SRB). To prevent the deterioration of material caused by biofilms it is necessary to understand the processes governing biofilm development including mechanisms of cell adhesion. Additionally, corrosion of metallic surfaces due to bacteria may lead to the dissolution of metallic elements that may further affect adhesion and biofilm development. A study was carried out to evaluate how the presence of nickel in the substrata affects the adhesion ability of Desulfovibrio desulfuricans. The substrata tested were stainless steel 304 (SS), metallic nickel (Ni) and polymethylmetacrylate (PMMA), a non-metallic material used as control. The influence of nickel on SRB growth and its relation to adhesion was also checked. A statistically significant difference in the number of adhered cells to the materials tested was detected, with higher bacterial number on nickel, followed by SS and finally by PMMA. The higher number of SRB adhered to steel compared with PMMA may be explained by differences in hydrophobicity, in roughness and in the electron-acceptor character of the substrata. Additionally, bacterial growth was found to be positively affected by the presence of nickel as revealed by a significant increase in the specific growth rate of SRB in the presence of increased nickel concentrations.  相似文献   

14.
While individual water molecules adsorb strongly on a talc surface (hydrophilic behavior), a droplet of water beads up on the same surface (hydrophobic behavior). To rationalize this dichotomy, we investigated the influence of the microscopic structure of the surface and the strength of adhesive (surface-water) interactions on surface hydrophobicity. We have shown that at low relative humidity, the competition between adhesion and the favorable entropy of being in the vapor phase determines the surface coverage. However, at saturation, it is the competition between adhesion and cohesion (water-water interactions) that determines the surface hydrophobicity. The adhesive interactions in talc are strong enough to overcome the unfavorable entropy, and water adsorbs strongly on talc surfaces. However, they are too weak to overcome the cohesive interactions, and water thus beads up on talc surfaces. Surprisingly, even talc-like surfaces that are highly adhesive do not fully wet at saturation. Instead, a water droplet forms on top of a strongly adsorbed monolayer of water. Our results imply that the interior of hydrophobic zeolites suspended in water may contain adsorbed water molecules at pressures much lower than the intrusion pressure.  相似文献   

15.
In the basic approach to investigations of neuronal--glial interactions during both normal brain development and its pathogenesis, embryonic brain cell populations were fractionated into purified neuronal and glial components. Using separation procedures based on differential adhesion and cytotoxicity, the isolated neuronal and glial phenotypes could be identified by distinct morphological and biochemical characteristics, including the visualization of glial fibrillary acid protein (GFA) within glial cells in immunohistochemical assays with monospecific anti-GFA serum. When unfractionated cerebrum cells dissociated from 10-day chick or 14-day mouse embryos were plated as monolayers and cultured for 1--14 days, monospecific antiserum against fibronectin (LETS glycoprotein) was found to react with many, but not all, of the cells as revealed by indirect immunofluorescence microscopy. The isolated neuronal and glial components of these populations were used to determine whether the appearance of membrane-associated fibronectin was characteristic of one cell type or the other, or both, and if neuronal--glial cell interaction was required for its expression. It was found that the surfaces of glial cells, completely isolated from neurons, showed an intense fluorescent reaction to the anti-fibronectin serum. In contrast, the purified neuronal cultures showed no fluorescence with either the anti-GFA or anti-fibronectin sera. These results demonstrate fibronectin as a cell surface protein associated primarily with glial cells and independent of neuronal--glial cell interaction for its expression. Furthermore, the results indicate that the fibronectin observed on glial cell surfaces in these cultures is produced endogenously and is not due to the preferential binding of fibronectin present in the culture medium. The role of fibronectin as an adhesive molecule in neuronal--glial interactions is discussed.  相似文献   

16.
A new biomimetic strategy for modification of biomaterial surfaces with poly(ethylene glycol) (PEG) was developed. The strategy exploits the adhesive characteristics of 3,4-dihydroxyphenylalanine (DOPA), an important component of mussel adhesive proteins, to anchor PEG onto surfaces, rendering the surfaces resistant to cell attachment. Linear monomethoxy-terminated PEGs were conjugated either to a single DOPA residue (mPEG-DOPA) or to the N-terminus of Ala-Lys-Pro-Ser-Tyr-Hyp-Hyp-Thr-DOPA-Lys (mPEG-MAPD), a decapeptide analogue of a protein found in Mytilus edulis adhesive plaques. Gold and titanium surfaces were modified by adsorption of mPEG-DOPA and mPEG-MAPD from solution, after which surface analysis by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy confirmed the presence of immobilized PEG on the surface. The ability of modified surfaces to resist cell attachment was examined by culturing 3T3 fibroblasts on the surfaces for up to 14 days. Quantitative image analysis revealed that cell adhesion to mPEG-DOPA and mPEG-MAPD modified surfaces decreased by as much as 98% compared to control surfaces. Modified Ti surfaces exhibited low cell adhesion for up to 2 weeks in culture, indicating that the nonfouling properties of mPEG-DOPA and mPEG-MAPD treated surfaces persist for extended periods of time. This strategy paradoxically exploits the strong fouling characteristics of MAP analogues for antifouling purposes and may be broadly applied to medical implants and diagnostics, as well as numerous nonmedical applications in which the minimization of surface fouling is desired.  相似文献   

17.
A commercial nonbinding surface effectively prevents protein adsorption; however, the platelet phenotype on this surface has yet to be defined. This study evaluates platelet adhesion and adsorption of several plasma/extracellular matrix (ECM) proteins to the nonbinding surface compared to other commonly used nontreated and high-binding surfaces. Platelet adhesion to uncoated microplates and those coated with fibrinogen or collagen is quantified by colorimetric assay. The binding capacity of the examined surfaces for plasma/ECM proteins is evaluated by measuring the relative and absolute protein adsorption. Compared to other surfaces, the nonbinding surface effectively prevents platelet adsorption, i.e. by 61-93% (Enzyme-Linked Immunosorbent Assay, ELISA), and reduces platelet adhesion, i.e. by 92%, when not coated with any protein. The nonbinding surface also decreases platelet deposition on collagen (up to 31%), but not fibrinogen. The nonbinding surface seems to be more of a low-fouling than nonfouling material, as it is able to reduce fibrinogen adsorption but not prevent platelet adhesion to fibrinogen. This feature should be considered when using the nonbinding surface for in vitro platelet testing.  相似文献   

18.
Sessile marine mussels must “dry” underwater surfaces before adhering to them. Synthetic adhesives have yet to overcome this fundamental challenge. Previous studies of bioinspired adhesion have largely been performed under applied compressive forces, but such studies are poor predictors of the ability of an adhesive to spontaneously penetrate surface hydration layers. In a force‐free approach to measuring molecular‐level interaction through surface‐water diffusivity, different mussel foot proteins were found to have different abilities to evict hydration layers from surfaces—a necessary step for adsorption and adhesion. It was anticipated that DOPA would mediate dehydration owing to its efficacy in bioinspired wet adhesion. Instead, hydrophobic side chains were found to be a critical component for protein–surface intimacy. This direct measurement of interfacial water dynamics during force‐free adsorptive interactions at solid surfaces offers guidance for the engineering of wet adhesives and coatings.  相似文献   

19.
Surface topography has vital roles in cellular response. Here, to investigate the mechanism behind cellular response to surface topography, we prepared honeycomb (HC)-patterned films from poly(epsilon-caprolactone) (PCL) with micropatterned surface topography by casting a polymer solution of water-immiscible solvent under high humidity. We characterized the adsorption of fibronectin (Fn) on the film using atomic force microscopy (AFM) and confocal laser scanning microscopy (CLSM). The response of porcine aortic endothelial cells (PAECs) to adsorbed Fn molecules onto HC-patterned films was observed by immunofluorescence labeling of vinculin and the actin fiber of PAECs cultured for 1 and 72 h in serum-free medium. The expression of focal adhesion kinase autophosphorylated at the tyrosine residue (pFAK) at 1 h culture was determined using an immunoprecipitation method. Fn adsorbed selectively around the pore edges to form ring-shaped aggregates. The immunostaining results revealed that PAECs adhered to the HC-patterned films at focal contact points localized around pore peripheries. These points correspond to adsorption sites of Fn. The expression of pFAK after 1 h on the HC-patterned film was 3 times higher than that on a corresponding flat film, indicating that the signaling mediated by the binding between Fn and the integrin receptor was more highly activated on the HC-patterned film. These results suggest that the cellular response to HC-patterned films (e.g., adhesion pattern and phosphorylation of FAK) originates from the regularly aligned adsorption pattern of Fn determined by the pore structure of the film.  相似文献   

20.
This study presents a simple method for the fabrication of an orthogonal surface that can be applied for cell patterning without the need to immobilize specific adhesive peptides, proteins, or extracellular matrix (ECM) for cell attachment. Micromolding in capillaries (MIMIC) produced two distinctive regions. One region contained poly(ethylene glycol)–poly(d,l-lactide) diblock copolymer (PEG–PLA) designed to provide a biological barrier to the nonspecific binding of proteins and fibroblast cells. The other region was coated with polyelectrolyte (PEL) to promote the adhesion of biomolecules including proteins and cells. Resistance to the adsorption of proteins increased with the length of PEG and PLA chains because the longer PEG chain increased the PEG layer thickness and the longer PLA chain induced stronger interaction with the PEL surface. The PEG5k–PLA2.5k (20 mg/ml) was the most efficient candidate for the prevention of protein adhesion among the PEG–PLA copolymers examined. The orthogonal functionality of prepared surfaces having PEL regions and background PEG–PLA regions resulted in rapid patterning of biomolecules. Fluorescein isothiocyanate-tagged bovine serum albumin (FITC-BSA) and fibroblast cells successfully adhered to the exposed PEL surfaces. Although methods for cell patterning generally require an adhesive protein layer on the desired area, these fabricated surfaces without adhesive proteins provide a gentle microenvironment for cells. In addition, our proposed approach could easily control patterns, sizes, and shapes at micron scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号