首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The performance of Pd gate MOS hydrogen sensor was studied using CV and GV characteristics. The device was fabricated on p-type <100> (1–6Ω cm.) silicon with thermal oxide layer of about 100 Å. The CV and GV responses of sensor were measured at different frequencies (1 kHz, 10 kHz, and 100 kHz) upon exposure to hydrogen (conc. 1–8%) at room temperature. It was observed that value of zero bias capacitance decreases with increase in frequency as well as hydrogen concentration. The inversion potential (Vinv.) and flat band voltage (VFB) of the device approach higher values as frequency is reduced. Interface trap density (Nit) was also determined corresponding to the peak in the conductance curve, using a bias scan conductance method at fixed frequency. Nit was found to be decreasing with increasing concentrations of hydrogen. The sensor showed better sensitivity at lower frequency.  相似文献   

2.
In this study, gold nanoparticles (AuNPs) were green synthesized using plant extract. The obtained nanoparticles (Au NPs) were characterized by advanced physical and chemical techniques like TEM, FTIR, UV–vis, SEM, XRD and EDX. SEM image displayed the quasi-spherical shaped nanoparticles of mean diameter 20–50 nm. All the particles were of uniform shape and texture. From the XRD pattern, four distinct diffraction peaks at 38.2°, 44.2°, 64.7° and 77.4° are indexed as (1 1 1), (2 0 0), (2 2 0) and (3 1 1) planes of fcc metallic gold. The in vitro cytotoxic and anti-gastric carcinoma effects of biologically synthesized Au NPs against cancer cell lines were assessed. The IC50 of the Au NPs were 192, 149, 76 and 85 µg/mL against NCI-N87, MKN45, GC1401 and GC1436 gastric cancer cell lines. The anti-gastric carcinoma properties of the Au NPs could significantly remove the cancer cell lines in a time and concentration-dependent manner. So, the findings of the recent research show that biologically synthesized Au NPs might be used to cure cancer.  相似文献   

3.
We have investigated the Au–Si(1 1 1) interface as a function of the Au coverage by the core-level photoemission spectroscopy. With increasing the Au coverage, the spectral features in the Si 2p core-level changed remarkably and some fine structures in both Si 2p and Au 4f spectra were observed. Based on the curve fitting analysis, the Si 2p and Au 4f spectra at more than 20 Å Au coverage were decomposed into three chemically different components, respectively. The assignments of their components were performed. In addition, we have compared these results for the Au–Si(1 1 1) interface with our previous study for the Au–Si(1 0 0) interface. It was found that the electronic structures for the Au–Si(1 1 1) interface is essentially identical to those of the Au–Si(1 0 0) interface except at the initial Au deposition.  相似文献   

4.
Si/C composites of carbon hollow structures loaded with Si nanoparticles (NPs) (Si/C-HSs) were prepared by one-step pyrolysis of a mixture of Si NPs and expandable microspheres (EMs). For the Si/C-HSs, hollow carbon shells with rough surfaces were formed by directly carbonizing the polymer shells of EMs, and the Si NPs fell into the void space or were loaded on the rough surfaces of the carbon shells. The EM-based carbon shells accommodated the volume expansion of the Si NPs and improved the electrical conductivity of the composites. As a result, the Si/C-HSs exhibited a high capacity (initial reversible capacity: 854.4 mAh g 1 at 300 mA g 1), stable cycling performance (capacity retention: 80% after 50 cycles), and excellent rate capability.  相似文献   

5.
A novel photoelectrochemical (PEC) sensor for mercury ions (Hg2 +) was fabricated based on the energy transfer (ET) between CdS quantum dots (QDs) and Au nanoparticles (NPs) with the formation of T–Hg2 +–T pairs. In the presence of Hg2 + ions, a T-rich single-strand (ss) DNA labeled with Au NPs could hybridize with another T-rich ssDNA anchored on the CdS QDs modified electrode, through T–Hg2 +–T interactions, rendering the Au NPs in close proximity with the CdS QDs and hence the photocurrent decrease due to the ET between the CdS QDs and the Au NPs. Under the optimal condition, the photocurrent decrease was proportional to the Hg2 + concentration, ranging from 3.0 × 10 9 to 1.0 × 10 7 M, with the detection limit of 6.0 × 10 10 M.  相似文献   

6.
The effect of 60Co (γ-ray) irradiation on the electrical properties of Au/SnO2/n-Si (MIS) structures has been investigated using the capacitance–voltage (CV) and conductance–voltage (G/ωV) measurements in the frequency range 1 kHz to 1 MHz at room temperature. The MIS structures were exposed to γ-rays at a dose rate of 2.12 kGy/h in water and the range of total dose was 0–500 kGy. It was found that the CV and G/ωV curves were strongly influenced with both frequency and the presence of the dominant radiation-induced defects, and the series resistance was increased with increasing dose. Also, the radiation-induced threshold voltage shift (ΔVT) strongly depended on radiation dose and frequency, and the density of interface states Nss by Hill–Coleman method decreases with increasing radiation dose.  相似文献   

7.
We report a detailed in situ X-ray diffraction study of the influence of chloride on the atomic structure evolution at the solid-electrolyte interface during the selective dissolution of Cu from a Cu3Au(1 1 1) surface immersed in 0.1 M H2SO4. We disclose that the formation of the initial ultrathin Au-rich (1 1 1) with an inverted stacking sequence, as recently observed at Cu3Au(1 1 1) in contact with pure 0.1 M H2SO4, is strongly influenced by adding 5 mM HCl. The main finding is a negative shift of about 150 mV of the critical potential at which the ultra-thin Au-rich layer transforms into thicker Au islands. The presented results support the view that it is not a thermodynamic driving force, but rather the rate of surface diffusion that dominates the formation of the structures of the metallic layer.  相似文献   

8.
Dichroic Nd3+:Au–antimony glass (K2O–B2O3–Sb2O3) nanocomposites (NCs) have been synthesized by single-step melt-quench thermochemical reduction process. The UV–Vis–NIR spectra show surface plasmon resonance (SPR) band of Au0 nanoparticles (NPs) and absorption peaks of Nd3+ ions. XRD and SAED results indicate growth of Au0 NPs along (200) plane. TEM image reveals elliptical Au0 NPs having sizes 12–21 nm (aspect ratio ~1.2) responsible for the dichroic behavior. Photoluminescent upconversion under excitation at 805 nm exhibit two emission bands of Nd3+ ions at 540 (green) and 650 (red) nm due to 4G7/2  4I9/2 and 4G7/2  4I13/2 transitions respectively. Both bands undergo maximum 8 and 11 fold intensity enhancements respectively at 0.03 wt% Au0 (4.1 × 1018 atoms/cm3). Local field enhancement (LFE) induced by Au0 SPR and energy transfer (ET) from Au0  Nd3+ is found to be responsible for enhancement while ET from Nd3+  Au0 and optical re-absorption due to Au0 SPR for quenching.  相似文献   

9.
A novel biomimetic logic gate sensor for Pb2 + is established using porous alumina membrane nanochannels modified with morpholino and DNA. It is based on electrochemical detection, and the current response from the diffusion flux of Fe(CN)63  is influenced by the steric blockage and charge repulsion in nanochannels. A limit of detection (0.1 nM) and good linear range (0.1 nM–5 μM) for Pb2 + analysis are achieved in the tenth cycle. The sensing strategy shows prospective application in drug release, artificial ion channels, DNA logic gates for controlling biomolecule, and ion translocation.  相似文献   

10.
《Vibrational Spectroscopy》2010,52(2):283-288
The far-infrared and Raman spectra of binuclear molecules [Me2AuX]2 (X = Cl, Br, I) and [Me2Au(OOCR)]2 (R = Me, CF3, But, Ph) in the 600–70 cm−1 region are reported. The experimentally measured vibrational frequencies of [Me2AuX]2 are in a good agreement with density functional theory predictions. The Au…Au vibrational interactions predicted to be in the 270–60 cm−1 region of [Me2AuX]2 far-IR and Raman spectra have been observed. The Raman-active Au…Au vibrations of the [Me2Au(OOCR)]2 molecules were found to be in the same region as those of [Me2AuX]2. The Au–X stretching modes were observed between 100 and 250 cm−1 in accordance with the DFT predictions. Their frequencies in the IR spectra of [Me2AuX]2 increase in the sequence I < Br < Cl while the AuC2 stretching frequencies decrease in the same order. This fact might be an evidence of the decreasing covalent character of the gold-halogen bridges. The Au–O stretching bands of dimethylgold(III) carboxylates have been observed in the 500–250 cm−1 region, and Au–C stretching frequencies of both [Me2AuX]2 and [Me2Au(OOCR)]2 compounds have been found between 600 and 500 cm−1.  相似文献   

11.
Density functional theory (DFT) calculations are used to investigate the basic electrochemical characteristics of Si-based anodes in calcium ion batteries (CIBs). The calculated average voltage of Ca alloying with fcc-Si to form the intermetallic CaxSi phases (0.5 < x  2) is of 0.4 V, with a volume variation of 306%. Decalciation of the lower Ca content phase, CaSi2, is predicted at an average voltage between 0.57 V (formation of Si-fcc, 65% volume variation) and 1.2 V (formation of metastable deinserted-Si phase, 29% volume variation). Experiments carried out in conventional alkyl carbonate electrolytes show evidence that electrochemical “decalciation” of CaSi2 is possible at moderate temperatures. The decalciation of CaSi2 is confirmed by different characterization techniques.  相似文献   

12.
The effect of electron beam irradiation on the conduction phenomenon of unplasticized PVC/PVA copolymer has been investigated. The current–voltage (J–V) characteristics in the voltage range 0.1–60 V were measured for films irradiated with different doses; 150, 550 and 1100 kGy. The temperature dependence of the J–V characteristics in the temperature range 303–343 K was obtained. The results indicated that the conduction as a function of the applied voltage depends on the presence of localized state or the trapping levels positioned at a specific energy Et below the conduction band. Therefore, the charge carrier's concentration in the conduction band, trapping parameter θ, electron mobility μ0, effective electron drift mobility μe as well as Fermi level energy Ef and trapping energy Et were estimated as a function of dose.  相似文献   

13.
We observed the Raman spectra of carriers, positive polarons and bipolarons, generated in a poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT-C14) film by FeCl3 vapor doping. Electrical conductivity and Raman measurements indicate that the dominant carriers in the conducting state were bipolarons. We identified positive polarons and bipolarons generated in an ionic-liquid-gated transistor (ILGT) fabricated with PBTTT-C14 as an active semiconductor and an ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [BMIM][TFSI] as a gate dielectric using Raman spectroscopy. The relationship between the source−drain current (ID) at a constant source−drain voltage (VD) and the gate voltage (VG) was measured. ID increased above −VG = 1.1 V and showed a maximum at −VG = 2.0 V. Positive polarons were formed at the initial stage of electrochemical doping (−VG = 0.8 V). As ID increased, positive bipolarons were formed. Above VG = −2.0 V, bipolarons were dominant. The charge density (n), the doping level (x), and the mobility of the bipolarons were calculated from the electrochemical measurements. The highest mobility (μ) of bipolarons was 0.72 cm2 V−1 s−1 at x = 110 mol%/repeating unit (−VG = 2.0 V), whereas the highest μ of polarons was 4.6 × 10−4 cm2 V−1 s−1 at x = 10 mol%.  相似文献   

14.
Gold(0) nanoclusters, stabilized by poly(N-vinyl-2-pyrrolidone) (Au:PVP-n), catalyzed the oxidative homo-coupling reaction of potassium aryltrifluoroborate in water under air. Catalytic activity was dependent on the size of clusters. The smallest cluster Au:PVP-1 (dav = 1.3 ± 0.3 nm) gave the highest activity, while Au:PVP-7 (dav = 9.5 ± 1.0 nm) did not catalyze the homo-coupling. The catalyst was reusable for several times. Positively charged surface on the Au cluster, generated by the adsorption of molecular oxygen, would be the active site of the catalysis.  相似文献   

15.
A poly(3,4-ethylenedioxythiopene) (PEDOT)/polyaniline (PANI) electrochromic device (ECD) was fabricated for the purpose of examining colouration efficiency (CE) as a function of charge density ingress/egress. CE is typically measured in cm2/C with the aim being to produce as large an optical density change as possible with the least amount of charge being consumed. Results indicate that CE is not constant but is highly dependent on charge density insertion and the switching voltage. At a switching voltage of 1.9 V the maximum CEmax was 1186 cm2/C, recorded at 60% of the full optical switch where as the CE95% was 302 cm2/C at 95% of the full optical switch. Furthermore, CEmax varied depending on the switching voltage from a high of 2212 cm2/C at a switching voltage of 1.2 V, 1528 cm2/C at 1.6 V and down to 1186 cm2/C at 1.9 V. The results highlight the fact that the current practice of quoting CE as a single-valued number may not reveal enough detail about the performance of ECDs and polymers.  相似文献   

16.
The electrochemical reduction of CO2 is strongly influenced by both the applied potential and the surface adsorption status of the catalyst. In this work a gas diffusion electrode (GDE) coated with Pd nanoparticles/carbon black (Pd/XC72) was used to study the electrochemical reduction of CO2. Cyclic voltammetric (CV) analysis of Pd/XC72 between 1.5 V and − 0.6 V (vs. RHE) shows the formation of intermediates and the blocking of hydrogen absorption on the Pd nanoparticles (NPs) under a CO2 atmosphere. The relationships between the Faradaic efficiency/current density and the applied potential reveal that the onset potential of CO formation is around − 0.4 V. Moreover, the presence of adsorbed CO was confirmed through CV analysis of Pd/XC72 under CO2 and CO/He atmospheres. This demonstrates that H atoms and CO intermediates co-adsorb on the surface of the Pd NPs at an applied potential of around − 0.4 V. When the applied potential is more negative than − 0.6 V, adsorption of CO intermediates on the surface of the Pd NPs becomes dominant.  相似文献   

17.
In this study, new xanthine biosensors, XO/Au/PVF/Pt and XO/Pt/PVF/Pt, based on electroless deposition of gold(Au) and platinum(Pt) nanoparticles on polyvinylferrocene(PVF) coated Pt electrode for detection of xanthine were presented. The amperometric responses of the enzyme electrodes were measured at the constant potential, which was due to the electrooxidation of enzymatically produced H2O2. Compared with XO/PVF/Pt electrode, XO/Au/PVF/Pt and XO/Pt/PVF/Pt exhibited excellent electrocatalytic activity towards the oxidation of the analyte. Effect of Au and Pt nanoparticles was investigated by monitoring the response currents at the different deposition times and the different concentrations of KAuCl4 and PtBr2. Under the optimal conditions, the calibration curves of XO/Au/PVF/Pt and XO/Pt/PVF/Pt were obtained over the range of 2.5 × 10?3 to 0.56 mM and 2.0 × 10?3 to 0.66 mM, respectively. The detection limits were 7.5 × 10?4 mM for XO/Au/PVF/Pt and 6.0 × 10?4 mM for XO/Pt/PVF/Pt. The effects of interferents, the operational and the storage stabilities of the biosensors and the applicabilities of the proposed biosensors to the drug samples analysis were also evaluated.  相似文献   

18.
The silicide Sc2RuSi2 was synthesized from the elements by arc-melting. The structure was refined on the basis of single crystal X-ray diffractometer data: Zr2CoSi2 type, C2/m, a = 1004.7 (2), b = 406.8 (1), c = 946.6 (2) pm, β = 117.95 (2), wR2 = 0.0230, 743 F2 values, and 32 variables. The structure consists of a rigid three-dimensional [RuSi2] network in which the two crystallographically independent scandium atoms fill larger cages of coordination numbers 16 and 15, respectively. The [RuSi2] network shows short Ru–Si distances (234–247 pm) and two different Si2 pairs: Si1–Si1 at 247 and Si2–Si2 at 243 pm. Each silicon atom has trigonal prismatic Sc6 (for Si2) or Sc4Ru2 (for Si1) coordination. These building units are condensed via common edges and faces. The various Sc–Sc distances between the prisms range from 327 to 361 pm. From electronic structure investigation within DFT, chemical bonding shows a major role of Ru–Si bonding and the presence of strong electron localization around Si–Si pairs pointing to a polyanionic silicide network [RuSi2]δ?. The 45Sc MAS-NMR spectra recorded at 11.7 and 9.4 T clearly resolve the two distinct scandium sites. The large electric field gradients present at both scandium sites result in typical line shapes arising from second-order quadrupole perturbation effects.  相似文献   

19.
A series of gold chloride {AuCl} adducts of the sterically demanding phosphines DmpPR2 (Dmp = 2,6-dimesitylphenyl; R = H (1); Me (2); Cl (3)) have been prepared. The adducts are readily formed by the reaction of Au(tht)Cl and DmpPR2, yielding [(DmpPR2)AuCl] (R = H (4); Me (5); Cl (6)) in moderate to excellent yields. All three new compounds have been structurally characterized. The structures demonstrate little or no significant intermolecular Au?Au or intramolecular Au?arene interactions. In addition, the new difluoroarylphosphine DmpPF2 (7) has been prepared and structurally characterized.  相似文献   

20.
In this study, the lithium storage capacity of Si nanoparticles is significantly enhanced by grafting with 4-carboxyphenyl groups via diazonium salts. The modified Si anodes exhibit reversible capacities of 1173 and 527 mA h g?1 at the 1st and 50th cycle, while those of the bare Si electrodes are only 56 and 62 mA h g?1, respectively. The improved electrochemical performance is supposed to arise from the formation of a robust and flexible solid electrolyte interface on the surfaces of the modified Si nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号