共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
光催化技术被认为有可能成为解决环境污染和能源危机的有效手段之一,引起了各国政府和科学家的极大兴趣.以TiO2,WO3和Bi2O3等半导体为催化剂的光催化反应受到广泛关注.WO3是一种典型的n型半导体材料,具有电致变色、气敏和光催化等性能,在电致变色器件、气敏传感器和光催化剂等方面有着广泛应用前景.由于WO3具有高的太阳能利用率、良好的可见光响应性和较强的抗光腐蚀性,是一种极具开发潜力的半导体光催化材料,所以在光解水制氢及催化降解有机污染物等领域中得到广泛应用.然而,WO3半导体表面上较高的光生电子-空穴复合效率是影响其光催化性能的主要因素之一,从而限制了WO3在光催化领域的工业应用.研究发现,TiO2材料在从锐钛矿向金红石转变的过程中,通过精细调变焙烧温度,可以在两种晶相的界面形成TiO2异相结.形成的锐钛矿-金红石异相结能有效促进电子-空穴分离.目前,构建异相结已成为改善光催化剂电子-空穴分离效率的有效方法之一.近年来,人们先后成功构建了α-Ga2O3/β-Ga2O3,α-Bi2O3/β-Bi2O3和WO3/WO3·H2O等异相结,这些异相结催化剂在光催化降解水产氢和降解污染物反应中显示了比单一晶相更高的光催化活性.WO3是一种多晶相材料,具有正交、六方、单斜和四方等多种晶体结构,其中六方晶相(h-WO3)由于具有开放结构而在气体传感器和电池电极等领域显示了突出性能,而单斜晶相(m-WO3)具有合适的带宽和良好的可见光响应性,因而广泛应用在光催化领域.而且,h-WO3的导带和价带均低于m-WO3的导带和价带,所以在WO3材料中有可能通过构建单斜/六方异相结(m-WO3/h-WO3)来提高WO3的光催化性能.本文借鉴半导体异相结概念,采用固相热分解法,试图通过调节焙烧温度和焙烧时间以构建m-WO3/h-WO3异相结催化剂.利用X射线衍射(XRD)、高分辨透射电镜(HRTEM)、扫描电镜(SEM)、X射线光电子能谱仪(XPS)和N2吸附-脱附等方法对WO3样品的晶相结构、形貌和元素组成等进行了表征.以光催化降解罗丹明B(RhB)为模型,研究了不同晶相WO3材料的光催化性能,考察了WO3晶相和异相结对其光催化性能的影响,从而为WO3材料中异相结的构建提供思路、方法和理论指导.结果表明,采用偏钨酸铵固相热分解制备WO3的过程中,焙烧温度为600-700℃时,样品为单斜晶相,随着焙烧温度升高至800℃时,样品中开始出现六方晶相.随着焙烧温度升高,h-WO3的含量没有明显变化,当温度升至1000℃时,h-WO3的含量有所减少.SEM和HRTEM结果验证了m-WO3/h-WO3异相结的形成,小的m-WO3粒子分布在棒状h-WO3上,并且两者紧密接触.为了进一步证实WO3的异相结效应,将偏钨酸铵在800℃焙烧不同时间(8-30 h).结果表明,通过改变焙烧时间可有效控制m-WO3和h-WO3混合晶相比例,800℃焙烧8h时m-WO3为主要晶相,焙烧12h时h-WO3含量明显增加,当焙烧时间延长至24和30h时h-WO3含量减少.SEM结果同样显示,在800℃焙烧12h样品中棒状h-WO3显著增多,与小的m-WO3粒子接触几率增大,即m-WO3/h-WO3异相结数量增加.不同晶相WO3样品光催化降解RhB的结果表明,具有m-WO3/h-WO3异相结结构的WO3催化剂具有较高光催化活性.荧光光谱结果表明,单斜相/六方相异相结的形成提高了电子-空穴分离效率,从而提高了其光催化降解RhB的活性.而在具有m-WO3/h-WO3异相结结构的WO3催化剂中,随着焙烧温度升高或焙烧时间延长,h-WO3含量有所减少,从而导致暴露的m-WO3/h-WO3异相结数量减少,因而使得活性有所降低.本文采用固相热分解法通过调变焙烧温度构建了m-WO3/h-WO3异相结光催化剂,显著提高了光催化降解RhB的活性,这对设计合成高效WO3基光催化剂具有一定借鉴. 相似文献
3.
Bekzat ABDIKADYR Alp KILI Onur ALEV Serkan BÜYÜKK
SE Zafer Ziya
ZTÜRK 《Turkish Journal of Chemistry》2021,45(2):295
Pristine and WO3 decorated TiO2 nanorods (NRs) were synthesised to investigate n-n-type heterojunction gas sensing properties. TiO2 NRs were fabricated via hydrothermal method on fluorine-doped tin oxide coated glass (FTO) substrates. Then, tungsten was sputtered on the TiO2 NRs and thermally oxidised to obtain WO3 nanoparticles. The heterostructure was characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) spectroscopy. Fabricated sensor devices were exposed to VOCs such as toluene, xylene, acetone and ethanol, and humidity at different operation temperatures. Experimental results demonstrated that the heterostructure has better sensor response toward ethanol at 200 °C. Enhanced sensing properties are attributed to the heterojunction formation by decorating TiO2 NRs with WO3. 相似文献
4.
气敏传感器已在生物、化学、航空、军事等领域获得了广泛的应用。鉴于WO3基气敏传感器是检测H2S、NOx、O3和NH3等气体最有前景的新型氧化物气敏传感器之一,本文以不同的敏感气体为分类依据系统阐述了近年来WO3基气敏传感器的研究进展,详细探讨了制备方法及贵金属掺杂对上述各种气体气敏性能的影响,并指出了目前WO3基气敏传感器在研究过程中存在的问题。 相似文献
5.
《Arabian Journal of Chemistry》2020,13(1):1283-1296
The correlation between crystallite size and the characteristics of micrometer-sized photocatalyst particles was investigated. As a model of photocatalyst, monoclinic tungsten trioxide particles with controllable crystallite sizes were used. The crystallite size was controlled independently in the constant particle outer diameters to comprehend the crystallite size parameters precisely. To minimize the misleading photocatalytic measurements due to the over-dominancy of other catalytic parameters (such as excessive surface area and quantum confinement effect), the present study utilized micrometer-sized particles. The results revealed that in the constant process condition, the photocatalytic properties were strongly dependent on the material crystallinity. Increases in the crystallite sizes had a strong influence to the enhancement of the photodecomposition rate of organic material. The tendency for the impact of crystallite size was also confirmed by varying the number of catalysts in the photocatalytic process. To confirm the analysis of photocatalysis, the study was completed with the theoretical consideration and the proposal of the particle formation as well as the phenomena that happen during the photocatalytic process. 相似文献
6.
A new photovoltaic film consisting of monoclinic WO(3) semiconductor and conjugated polythiophene (PT) is prepared via an in situ polymerization which is initiated by photoexcited WO(3). It is observed that PT grows on the WO(3) substrate along with reaction time, leading to uniform and high quality PT-WO(3) composite films. Structures of the as-synthesized films are studied by using Raman and X-ray photoelectron spectroscopy (XPS) with the aim of gaining an insight into the interface. The results show that the sulfur sites of PT are bound to the semiconductor through a strong linkage and an acceptor-donor complex is formed as a result of the electron transfer from PT to WO(3). The cyclic voltammetry analysis confirms the charge-transfer reaction. Film devices are fabricated by using the PT-WO(3) composite film as the active layer and measured under AM 1.5G illumination for the photocurrents and incident photon-to-current conversion efficiency. 相似文献
7.
Background oxygen play important role in the detection of gases on metal oxide surfaces. In this work, a new mechanism dominated by oxygen density has been proposed based on density functional theory (DFT) calculation of CO adsorption on the oxygen pre-absorbed and oxygen deficient hexagonal WO3 (h-WO3) (001) surface. Taking clean WO-terminated h-WO3 (001) surface as the datum, we can define the O- and WO-terminated h-WO3 (001) surfaces to be situations with surface oxygen density (denoted as dO) of 1 and 0, respectively. And the oxygen density will be positive (1 > dO > 0) for oxygen absorbed surfaces and negative (0 > dO > ?1) for oxygen vacancy presented surfaces. More importantly, environmental oxygen concentration can be reflected directly by surface oxygen density. A positive correlation between environmental oxygen concentration (surface oxygen density) and sensing ability (charge transfer number) can be constructed based on the data of CO sensing on h-WO3 (001) surfaces (Zhao et al., 2013; Tian et al., 2014). And these ideas obtained for CO on h-WO3 can also be generalized to other gases and materials. The new proposed oxygen density dominated gas sensing mechanism, combined the two existing models of surface absorbed oxygen and oxygen vacancy together by the use of one physical quantity of oxygen density, will simplify the understanding of the effect of environmental oxygen on gas sensing largely. And the new findings here will provide substantial chances for controllable sensing by surface tuning. 相似文献
8.
社会经济快速发展的同时, 也带来了日益严峻的环境污染问题. 半导体光催化氧化技术因节能环保而在环境领域有广阔的应用前景. 作为最具有代表性的半导体光催化材料, TiO2因为其禁带宽度(3.2 eV)比较大, 只能被紫外光激发, 因而对太阳能的利用率较低. 作为一种最简单的含铋层状氧化物, Bi2WO6的禁带宽度(2.7 eV)相对较小, 可以部分利用太阳光中的可见光, 因而受到广大研究者的青睐. 但是, Bi2WO6光催化材料的可见光响应范围较窄, 仅能被波长小于450 nm的光激发, 且激发后的光生载流子容易复合, 导致光催化效率不高. 因此, 迫切需要对Bi2WO6光催化材料进行结构修饰与改性,采用拓展其光响应范围和抑制载流子复合, 来提高其光催化活性.本文采用离子交换法原位合成了具有核-壳结构的Bi2S3@Bi2WO6纳米片, 充分利用Bi2S3优良的可见光响应性能和半导体异质结光催化剂的构建, 来提高Bi2WO6的光催化活性. 结果表明, 随着Na2S·9H2O用量从0增加到1.5 g, 所得催化剂的光活性不断提高, X3B的降解速率常数由0.40×10-3min-1增加到6.6×10-3min-1, 催化剂活性提高了16.5倍. 当进一步增加Na2S·9H2O的用量时(1.5-3.0 g), 复合催化剂的光活性下降. 这是由于过多Na2S·9H2O的引入导致在催化剂表面生成了没有光活性的NaBiS2层(Bi2S3+ Na2S = 2NaBiS2), 占据了催化剂的活性位点, 阻碍了染料分子与催化剂的直接接触. Bi2WO6@Bi2S3异质结纳米片光活性的提高, 可归因于Bi2S3的敏化作用极大拓展了复合催化剂的光响应范围; 另一方面, Bi2WO6和Bi2S3两者之间的半导体异质结效应有效促进了光生载流子在空间的有效分离, 抑制了光生电子-空穴的复合, 从而提高了复合催化剂的催化效率. 本研究为其他半导体复合材料的原位生长制备提供了新的思路. 相似文献
9.
The sensor based on WO3-Cr2O3 nanocomposites show good selectivity to 2-butanone. 相似文献
10.
The crystal and molecular structure of modification II of the Mn(S2CO-i-C3H7)2(2,2’-Bipy) complex was determined from X-ray diffraction data (“Syntex P21” diffractometer, CuKα radiation, 1603 F(hkl), R = 0.0446). The crystals are monoclinic,a = 23350(3),b = 9.325(1),c = 22.030(2) å, Β = 106.98(1)?,V = 4587.7 å3, Z =8, d calc = 1.394 g/cm3, space group C2/c. The structure consists of monomeric molecules in which the manganese atom has a distorted octahedral environment (4S + 2N). The orthorhombic and monoclinic modifications of the complex are compared with respect to the molecular geometry and packing. 相似文献
11.
Auttasit Tubtimtae Kai-Yu Cheng Ming-Way Lee 《Journal of Solid State Electrochemistry》2014,18(6):1627-1633
This work investigates the photovoltaic properties of new-architecture Ag2S quantum dot-sensitized solar cells (QDSCs) fabricated on WO3 electrodes. Liquid-junction Ag2S QDSCs were fabricated from QDs synthesized using the successive ionic layer adsorption and reaction process. The optimal QDSC yielded an efficiency η of 0.20 % under a 100-mW/cm2 light illumination. Coating the QDSC with a compact layer and a scattering layer improved η to 0.31 % with a short-circuit current density J sc of 5.81 mA/cm2 and an open-circuit voltage V oc of 0.21 V. η increased to 0.53 % at a reduced 0.1 sun illumination with a J sc of 1.11 mA/cm2. The external quantum efficiency (EQE) spectrum covered the spectral range of 350–900 nm with a maximal EQE of 29 % at λ?=?650 nm. This work demonstrates the feasibility of the new-configuration Ag2S QDSCs fabricated on WO3 electrodes. 相似文献
12.
13.
14.
Ou JZ Yaacob MH Breedon M Zheng HD Campbell JL Latham K du Plessis J Wlodarski W Kalantar-Zadeh K 《Physical chemistry chemical physics : PCCP》2011,13(16):7330-7339
It is well known that WO(3) interacts efficiently with H(2) gas in the presence of noble metals (such as Pd, Pt and Au) at elevated temperatures, changing its optical behaviors; and that its crystallinity plays an important role in these interactions. For the first time, we investigated the in situ Raman spectra changes of WO(3) films of different crystal phases, while incorporating Pd catalysts, at elevated temperatures in the presence of H(2). The Pd/WO(3) films were prepared using RF sputtering and subsequently annealed at 300, 400 and 500 °C in air in order to alter the dominant crystal phase. The films were then characterized using SEM, XRD, XPS, and both UV-VIS and Raman spectroscopy. In order to fundamentally study the process, the measurements were conducted when films were interacting with 1% H(2) in synthetic air at elevated sample temperatures (20, 60, 100 and 140 °C). We suggest that the changes of Raman spectra under such conditions to be mainly a function of the crystal phase, transforming from monoclinic to a mix phase of monoclinic and orthorhombic achieved via increasing the annealing temperature. The as-deposited sample consistently shows similar Raman spectra responses at different operating conditions upon H(2) exposure. However, increasing the annealing temperature to 500 °C tunes the optimum H(2) response operating temperature to 60 °C. 相似文献
15.
Hangmin Guan 《Journal of solid state chemistry》2004,177(3):781-785
Hexagonal and monoclinic NdPO4 nanowires about 5-50 nm in diameter and up to several micrometers long were prepared through hydrothermal reaction in 100°C and 220°C, respectively. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), and high-resolution transmission electron microscopy (HRTEM). Furthermore, both the temperature and the pH value influence on the products were investigated. 相似文献
16.
Sihan Li Lili Xie Guifang Luo Yutong Han Ming Zhou Rawat Jaisutti Zhigang Zhu 《中国化学快报》2022,33(1):551-556
There is a great demand for high-performance hydrogen sulfide(H2S) sensors with low operating temperatures. Ag/In2O3 hexagonal tubes with different proportions were prepared by the calcination of Ag+-impregnated indium-organic frameworks(CPP-3(In)), and the developed sensors exhibit enhanced gassensing performance toward H2S. Gas sensing measurements indicate that the response of Ag/In2O3(2.5 wt%) sensor to 5 ppm H2S ha... 相似文献
17.
18.
XX Zou GD Li PP Wang J Su J Zhao LJ Zhou YN Wang JS Chen 《Dalton transactions (Cambridge, England : 2003)》2012,41(32):9773-9780
A W-containing inorganic-organic nanohybrid with a plate-like morphology has been successfully prepared through a nonaqueous synthetic route using WCl(6) as the tungsten source and benzyl alcohol as the solvent. The as-prepared hybrid nanomaterial was used directly as an efficient precursor for the formation of WO(3) nanoplates via a simple thermal treatment process. The as-obtained WO(3) material maintains the plate-like morphology of the precursor and possesses a unique uneven surface structure. It is noted that the use of a inorganic-organic hybrid precursor is essential for the creation of an uneven surface on the WO(3) nanoplates, which exhibit high sensitivity and selectivity for the detection of acetone vapour at a relatively low operating temperature (200 °C). The excellent sensing performance of the WO(3) nanomaterial is attributed to its unique uneven surface structure besides the small particle size and ultrathin morphology. 相似文献
19.
Wang G Ji Y Huang X Yang X Gouma PI Dudley M 《The journal of physical chemistry. B》2006,110(47):23777-23782
We describe the fabrication and characterization of tungsten oxide nanofibers using the electrospinning technique and sol-gel chemistry. Tungsten isopropoxide sol-gel precursor was incorporated into poly(vinyl acetate)(PVAc)/DMF solutions and electrospun to form composite nanofibers. The as-spun composite nanofibers were subsequently calcinated to obtain pure tungsten oxide nanofibers with controllable diameters of around 100 nm. SEM and TEM were utilized to investigate the structure and morphology of tungsten oxide nanofibers before and after calcination. The relationship between solution concentration and ceramic nanofiber morphology has been studied. A synchrotron-based in situ XRD method was employed to study the dynamic structure evolution of the tungsten oxide nanofibers during the calcination process. It has been shown that the as-prepared tungsten oxide ceramic nanofibers have a quick response to ammonia with various concentrations, suggesting potential applications of the electrospun tungsten oxide nanofibers as a sensor material for gas detection. 相似文献