首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
MnxNi0:5-xZn0:5Fe2O4 nanorods were successfully synthesized by the thermal treatment of rod-like precursors that were fabricated by the co-precipitation of Mn2+, Ni2+, and Fe2+ in the lye. The phase, morphology, and particle diameter were examined by the X-ray diffrac-tion and transmission electron microscopy. The magnetic properties of the samples were stud-ied using a vibrating sample magnetometer. The results indicated that pure Ni0:5Zn0:5Fe2O4 nanorods with a diameter of 35 nm and an aspect ratio of 15 were prepared. It was found that the diameter of the MnxNi0:5-xZn0:5Fe2O4 (0≤x≤0.5) samples increased, the length and the aspect ratio decreased, with an increase in x value. When x=0.5, the diameter and the aspect ratio of the sample reached up to 50 nm and 7~8, respectively. The coercivity of the samples first increased and then decreased with the increase in the x value. The coer-civity of the samples again increased when the x value was higher than 0.4. When x=0.5,the coercivity of the MnxNi0:5-xZn0:5Fe2O4 sample reached the maximal value (134.3 Oe)at the calcination temperature of 600 oC. The saturation magnetization of the samples first increased and then decreased with the increase in the x value. When x=0.2, the satura-tion magnetization of the sample reached the maximal value (68.5 emu/g) at the calcination temperature of 800 oC.  相似文献   

2.
The perovskite (Bi0.5Pb0.5)(Fe0.5Zr0.5)O3 was synthesized by solid-state reaction in an attempt to find magnetoelectric materials, in which ferroelectricity and ferromagnetism coexist. This complex perovskite has been studied by X-ray and neutron powder diffraction in combination with magnetic measurements. The compound crystallizes in the orthorhombic space group Pbam with a ~ √2ap, b ~ 2√2ap and c ~ 2ap (with ap ~ 4.057 Å). The field and temperature dependence of the magnetization combined with neutron diffraction data showed antiferromagnetic behavior with the Neel temperature, TN ~ 450 K. Rietveld refinements of neutron powder diffraction data collected at different temperatures, between 10 and 700 K, have been carried out in order to extract information about the thermal evolution of the nuclear and magnetic structures. A distorted orthorhombic perovskite structure was found within the whole temperature interval. The Bi/Pb and Fe/Zr ions were found to be partially ordered over the perovskite A-site and disordered over the B-site. The neutron diffraction patterns of the (Bi0.5Pb0.5)(Fe0.5Zr0.5)O3 sample showed evidence of a long-range magnetic ordering below TN with a propagation vector k = (0,0,0) and an antiferromagnetic arrangement of the magnetic moments of the Fe3+ cations in the B-site. This is consistent with an Ay-type magnetic structure. The factors governing the structural and magnetic properties of (1 ? x)BiFeO3xPbZrO3 solid solutions are discussed and compared with those of pure BiFeO3 and PbZrO3. A solid solution strategy for developing magnetoelectric properties in BiFeO3-based compounds is described, with the aim of realizing both a spontaneous polarization and magnetization at room temperature.  相似文献   

3.
A new binary Mn0.5Fe0.5(H2PO4)2·xH2O powder was synthesized by simple and cost-effective method using phosphoric acid, manganese and iron metals as starting chemicals. The synthesized solid shows the complex thermal transformations and the final decomposition product is a new binary manganese iron cyclo-tetraphosphate, MnFeP4O12. The X-ray diffraction and FTIR results indicate that the synthesized new binary Mn0.5Fe0.5(H2PO4)2·xH2O and the decomposition MnFeP4O12 powders are a pure monoclinic phase with space group P21/n (Z = 2) and C2/c (Z = 4), respectively. The particle morphologies of Mn0.5Fe0.5(H2PO4)2·xH2O and MnFeP4O12 powders appear as the rod-like tetragonal shape and show a high agglomeration of small particles, which are similar to the case of Mn(H2PO4)2·2H2O and Fe2P4O12, respectively. Room temperature magnetization results show a ferromagnetic behavior of the Mn0.5Fe0.5(H2PO4)2·xH2O and MnFeP4O12 powders, having the hysteresis loops in the range of ?10,000 Oe < H < +10,000 Oe with the specific magnetization values of 25.63 and 13.14 emu/g at 10 kOe, respectively. The lower magnetizations of Mn0.5Fe0.5(H2PO4)2·xH2O and MnFeP4O12 than those of Fe(H2PO4)2·2H2O and Fe2P4O12 powders indicate the presence of Mn ions in substitution position of Fe ions.  相似文献   

4.
High performance LiNi0.5Mn1.5O4 was prepared by a combinational annealing method. All samples were characterized by X-ray diffraction, infrared, and cell measurements. With increasing the annealing time at 600 °C, LiNi0.5Mn1.5O4 showed a decreased lattice parameter and an enhanced Ni-ordering. The electrochemical property of LiNi0.5Mn1.5O4 was optimized by controlling the annealing time. It was found that after annealing at 600 °C for 8 h, LiNi0.5Mn1.5O4 can discharge up to 138 mA h g−1 with a superior cycling performance at the rate of 5/7 C. High-rate test indicated that LiNi0.5Mn1.5O4 exhibited excellent electrochemical performance when charged and discharged at 1.2 C and 2.5 C, respectively. The findings reported in this work are expected to pave the way for the practical application of LiNi0.5Mn1.5O4.  相似文献   

5.
Nano-crystalline zinc-substituted cobalt ferrite powders, Co1−xZnxFe2O4 (x = 0, 0.25, 0.5, 0.75 and 1), have been synthesized by the combustion route. The structural, morphological and magnetic properties of the products were determined and characterized in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and vibrating sample magnetometer (VSM). X-ray analysis showed that the samples were cubic spinel. The increase in zinc concentration resulted in an increase in the lattice constant, unit cell volume, X-ray density, ionic radii, the distance between the magnetic ions and bond lengths on tetrahedral sites and octahedral sites of cubic spinel structure. Opposite behavior was observed for the average crystallite size of the as synthesized solids. The variation of saturation magnetization (Ms) value of the samples was studied. The maximum saturation magnetization value of the Coo.25Zn0.75Fe2O4 sample reached 76.87 emu/g. The high saturation magnetization of these samples suggests that this method is suitable for preparing high-quality nano-crystalline magnetic ferrites for practical applications.  相似文献   

6.
Ni0.5Zn0.5Fe2O4 nanofibers with addition of 0–5 wt% Bi2O3 were synthesized by calcination of the electrospun polyvinylpyrrolidone/inorganic composite nanofibers at the temperature below the melting point of Bi2O3. The effects of Bi2O3 addition on the phase structure, morphology and magnetic properties of the nanofibers were investigated by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, selected area electron diffraction and vibrating sample magnetometer. It is found that the nanofiber diameter, crystallite size and magnetic parameters can be effectively tuned by simply adjusting the amount of Bi2O3 addition. The average diameter of Ni0.5Zn0.5Fe2O4 nanofibers doped with different contents of Bi2O3 ranges from 40 to 63 nm and gradually decreases with increasing Bi2O3 content. The addition of Bi2O3 does not induce the phase change and all the samples are a single-phase spinel structure. The amorphous Bi2O3 tends to concentrate on the nanoparticle surface and/or grain boundary and can retard the particles motion as well as the grain growth, resulting in a considerable reduction in grain size compared to the pristine sample. The specific saturation magnetization and coercivity of the nanofibers gradually decrease with the increase of Bi2O3 amount. Such behaviors are explained on the basis of chemical composition, surface effect, domain structure and crystal anisotropy.  相似文献   

7.
Tetragonal copper ferrite (CuFe2O4) nanofibers were fabricated by electrospinning method using a solution that contained poly(vinyl pyrrolidone) (PVP) and Cu and Fe nitrates as alternative metal sources. The as-spun and calcined CuFe2O4/PVP composite samples were characterized by TG-DTA, X-ray diffraction, FT-IR, and SEM, respectively. After calcination of the as-spun CuFe2O4/PVP composite nanofibers (fiber size of 89 ± 12 nm in diameter) at 500 °C in air for 2 h, CuFe2O4 nanofibers of 66 ± 13 nm in diameter having well-developed tetragonal structure were successfully obtained. The crystal structure and morphology of the nanofibers were influenced by the calcination temperature. After calcination at 600 and 700 °C, the nature of nanofibers changed which was possibly due to the reorganization of the CuFe2O4 structure at high temperature, and a fiber structure of packed particles or crystallites was prominent. Crystallite size of the nanoparticles contained in nanofibers increases from 7.9 to 23.98 nm with increasing calcination temperature between 500 and 700 °C. Room temperature magnetization results showed a ferromagnetic behavior of the calcined CuFe2O4 samples, having their specific saturation magnetization (Ms) values of 17.73, 20.52, and 23.98 emu/g for the samples calcined at 500, 600, and 700 °C, respectively.  相似文献   

8.
SrFe12O19 (SFO)/Ni0.5Zn0.5Fe2O4 (NZFO) composite ferrite nanofibers with diameters about 120 nm have been prepared by the electrospinning and calcination process. The SFO/NZFO composite ferrites are formed after calcined at 700 °C for 2 h and the composite nanofibers with various mass ratios obtained at 900 °C are fabricated from NZFO grains about 16–40 nm and SFO grains of 19–45 nm with a uniform phase distribution. With the SFO ferrite content increasing, the coercivity (Hc) and remanence (Mr) for the composite ferrite nanofibers initially increase, reaching maximum values of 379.8 kA/m (297 K) and 242.2 kA/m (77 K), 39.1 Am2/kg (297 K) and 53.5 Am2/kg (77 K), respectively, at a mass ratio (SFO:NZFO) of 4, and then show a reduction tendency with a further increase of the mass ratio. This enhancement in magnetic properties is attributed to the competition of the exchange–coupling interaction and the dipolar interaction in the composite nanofibers.  相似文献   

9.
The effects of doping the mixed-conducting (La,Sr)FeO3−δ system with Ce and Nb have been examined for the solid-solution series, La0.5−2xCexSr0.5+xFeO3−δ (x = 0–0.20) and La0.5−2ySr0.5+2yFe1−yNbyO3−δ (y = 0.05–0.10). Mössbauer spectroscopy at 4.1 and 297 K showed that Ce4+ and Nb5+ incorporation suppresses delocalization of p-type electronic charge carriers, whilst oxygen nonstoichiometry of the Ce-containing materials increases. Similar behavior was observed for La0.3Sr0.7Fe0.90Nb0.10O3−δ at 923–1223 K by coulometric titration and thermogravimetry. High-temperature transport properties were studied with Faradaic efficiency (FE), oxygen-permeation, thermopower and total-conductivity measurements in the oxygen partial pressure range 10−5–0.5 atm. The hole conductivity is lower for the Ce- and Nb-containing perovskites, primarily as a result of the lower Fe4+ concentration. Both dopants decrease oxide-ion conductivity but the effect of Nb-doping on ionic transport is moderate and ion-transference numbers are higher with respect to the Nb-free parent phase, 2.2 × 10−3 for La0.3Sr0.7Fe0.9Nb0.1O3−δ cf. 1.3 × 10−3 for La0.5Sr0.5FeO3−δ at 1223 K and atmospheric oxygen pressure. The average thermal expansion coefficients calculated from dilatometric data decrease on doping, varying in the range (19.0–21.2) × 10−6 K−1 at 780–1080 K.  相似文献   

10.
Manganese is one of the heavy metals that is a major environmental concern when present in large amount. Manganese is discarded into water systems by numerous industries, including mining, batteries and electroplating etc. Pineapple leaves were applied as a biomass source to produce a magnetic hydrothermal treated hydochar nanocomposite; Fe3O4-HC. The BET surface area of Fe2O3-HC nanocomposite was 21.27 m2/g. Batch adsorption experiments revealed that the uptake of Mn2+ fit well in the pseudo second kinetics model, while the adsorption isotherm best fit the Freundlich model, with a maximum adsorption capacity of 2.99 mg/g at 25 °C and a pH of 5. The obtained thermodynamic parameters demonstrated that Mn2+ ion adsorption using the Fe2O3-HC nanocomposite was endothermic and nonspontaneous. Additionally, Fe2O3-HC nanocomposite demonstrated to be highly selective towards Mn2+ ions in the presence of other ions. The removal percentage of Mn2+ from a real water sample spiked with 50 mg/L Mn2+ was reported to be 53.2%. The spent adsorbent was then used to detect latent fingerprints, which revealed that Mn2+-Fe2O3-HC nanocomposite generated better and clear latent fingerprints than Fe2O3-HC nanocomposite.  相似文献   

11.
Sr0.8La0.2Zn0.2Fe11.8O19/poly(vinyl pyrrolidone) (PVP) composite fiber precursors were prepared by the sol–gel assisted electrospinning. Subsequently, the M-type ferrite Sr0.8La0.2Zn0.2Fe11.8O19 nanofibers with diameters about 120 nm were obtained by calcination of these precursors at different heat treatment conditions. The precursor and resultant Sr0.8La0.2Zn0.2Fe11.8O19 nanofibers were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectrometer and vibrating sample magnetometer. With the calcination temperature increased up to 1,000 °C for 2 h or the holding time prolonged to 12 h at 900 °C, the Sr0.8La0.2Zn0.2Fe11.8O19 particles gradually grow into a hexagonal elongated plate-like morphology due to the dimensional control along the nanofiber length. These elongated plate-like particles will be linked one by one to form the nanofiber with a necklace-like morphology. The magnetic properties of the Sr0.8La0.2Zn0.2Fe11.8O19 nanofibers are closely related to grain sizes, impurities and defects in the ferrite, which are influenced by the calcination temperature, holding time and heating rate. After calcined at 900 °C for 12 h with a heating rate of 3 °C/min, the optimized magnetic properties are achieved with the specific saturation magnetization 75.0 A m2 kg−1 and coercivity 426.3 kA m−1 for the Sr0.8La0.2Zn0.2Fe11.8O19 nanofibers.  相似文献   

12.
A series of lithium–manganese–nickel-oxide compositions that can be represented in three-component notation, xLi[Mn1.5Ni0.5]O4 · (1  x){Li2MnO3 · Li(Mn0.5Ni0.5)O2}, in which a spinel component, Li[Mn1.5Ni0.5]O4, and two layered components, Li2MnO3 and Li(Mn0.5Ni0.5)O2, are structurally integrated in a highly complex manner, have been evaluated as electrodes in lithium cells for x = 1, 0.75, 0.50, 0.25 and 0. In this series of compounds, which is defined by the Li[Mn1.5Ni0.5]O4–{Li2MnO3 · Li(Mn0.5Ni0.5)O2} tie-line in the Li[Mn1.5Ni0.5]O4–Li2MnO3–Li(Mn0.5Ni0.5)O2 phase diagram, the Mn:Ni ratio in the spinel and the combined layered Li2MnO3 · Li(Mn0.5Ni0.5)O2 components is always 3:1. Powder X-ray diffraction patterns of the end members and the electrochemical profiles of cells with these electrodes are consistent with those expected for the spinel Li[Mn1.5Ni0.5]O4 (x = 1) and for ‘composite’ Li2MnO3 · Li(Mn0.5Ni0.5)O2 layered electrode structures (x = 0). Electrodes with intermediate values of x exhibit both spinel and layered character and yield extremely high capacities, reaching more than 250 mA h/g with good cycling stability between 2.0 V and 4.95 V vs. Li° at a current rate of 0.1 mA/cm2.  相似文献   

13.
The rate capability and cyclic performance of the LiNi0.5Mn1.5O4 under high current density have been significantly improved by doping a small amount of ruthenium (Ru). Specifically, Li1.1Ni0.35Ru0.05Mn1.5O4 and LiNi0.4Ru0.05Mn1.5O4 synthesized by solid state reaction can respectively deliver a discharge capacity of 108 and 117 mAh g?1 at 10 C rate between 3 and 5 V. At 10 C charge/discharge rate, Li1.1Ni0.35Ru0.05Mn1.5O4 and LiNi0.4Ru0.05Mn1.5O4 can respectively maintain 91% and 84% of their initial capacity after 500 cycles, demonstrating that Ru-doping could be a way to enhance the electrochemical performance of spinel LiNi0.5Mn1.5O4.  相似文献   

14.
A disordered rocksalt Li-excess cathode material, Li1.25Nb0.25Mn0.5O2, was synthesized and investigated. It shows a large initial discharge capacity of 287 mAh g 1 in the first cycle, which is much higher than the theoretical capacity of 146 mAh g 1 based on the Mn3+/Mn4+ redox reaction. In situ X-ray diffraction (XRD) demonstrates that the compound remains cation-disordered during the first cycle. Electron energy loss spectroscopy (EELS) suggests that Mn and O are likely to both be redox active, resulting in the large reversible capacity. Our results show that Li1.25Nb0.25Mn0.5O2 is a promising cathode material for high capacity Li-ion batteries and that reversible oxygen redox in the bulk may be a viable way forward to increase the energy density of lithium-ion batteries.  相似文献   

15.
Yellow emitting β-Zn2SiO4:Mn2+ and green emitting α-Zn2SiO4:Mn2+ nanoparticles are synthesized by nucleation applying a zinc-containing ionic liquid. As-prepared material is non-agglomerated and very uniform with a mean diameter of 32 nm. According to X-ray diffraction (XRD) two crystallographic different modifications of Zn2SiO4 can be realized by annealing of as-prepared and non-crystalline nanomaterial at 750 and 1000 °C. Surprisingly, these crystalline materials are still nanosized, non-agglomerated and redispersible. Scanning electron microscopy (SEM) and dynamic light scattering (DLS) confirm particle diameters of 18 nm (β-Zn2SiO4:Mn2+) and 14 nm (α-Zn2SiO4:Mn2+). Photoluminescence indicates Mn2+-related emission at an average wavelength of 579 nm and 528 nm, and a quantum yield of 7% and 12% for β-Zn2SiO4:Mn2+ and α-Zn2SiO4:Mn2+, respectively.  相似文献   

16.
Hollow microspheres composed of phase-pure ZnFe2O4 nanoparticles (hierarchically structured) have been prepared by hydrothermal reaction. The unique hollow spherical structure significantly increases the specific capacity and improves capacity retention of this material. The product of each phase transition during initial discharge (ZnFe2O4 ? Li0.5ZnFe2O4 ? Li2ZnFe2O4  Li2O + Li–Zn + Fe) and their structural reversibility are recognized by X-ray diffraction and electrochemical characterization. The products of the deeply discharged (Li–Zn alloy and Fe) and recharged materials (Fe2O3) were clarified based on high resolution transmission electron microscopic technique and first-principle calculations.  相似文献   

17.
Alumina gels AN6 and AN7 were prepared by precipitation with NaOH from hydrated aluminum sulfate at pH 6 and 7, respectively. A third alumina gel AA7 was similarly prepared, but by precipitation with 30% ammonia. Pure cadmia C8 and C9 were precipitated from cadmium sulfate at pH 8 and 9 using NaOH. Five mechanically mixed gels ACM (1:0.25), ACM (1:0.5), ACM (1:1), ACM (0.5:1) and ACM (0.25:1) were prepared by thoroughly mixing the appropriate molar ratios of AN7 and C8. Also, five coprecipitated gels ACC (1:0.25), ACC (1:0.5), ACC (1:1), ACC (0.5:1) and ACC (0.25:1) were coprecipitated by dropping simultaneously the appropriate volumes of 1 M aluminum sulfate, 1 M cadmium sulfate and 3 M NaOH. Calcination products at 400, 500, 600, 800 and 1000 °C were obtained from each preparation.TG–DTA patterns of uncalcined samples were analyzed and the XRD of all 1000 °C-products and some selected samples calcined at 400–800 °C were investigated. The thermal behaviors of pure and mixed gels depend on the precipitating agent, pH of precipitation, chemical composition and method of preparation. Generally, calcination at temperatures below 800 °C gave poorly crystalline phases. Well crystalline phases are obtained at 800 and 1000 °C. For pure alumina γ-Al2O3 was shown as 400 °C-calcination product that transforms into the δ form around 900 °C and later to θ-Al2O3 as a major phase and α-Al2O3 as a minor phase at 1000 °C. CdO was shown by 500 °C-calcined cadmia gel that showed color changes with rise of calcination temperature. The most stable black cadmium oxide phase (Monteponite) is obtained upon calcination at 1000 °C. Thousand degree celsius- calcined mixed oxides showed θ-Al2O3, α-Al2O3, CdAl2O4 and monteponite which dominate depending on the chemical composition.  相似文献   

18.
The Fex(Cr2O3)1?x system, with 0.10  X  0.80, was mechanically processed for 24 h in a high-energy ball-mill. In order to examine the possible formation of iron–chromium oxides and alloys, the milled samples were, later, thermally annealed in inert (argon) and reducing (hydrogen) atmospheres. The as-milled and annealed products were characterized by X-ray diffraction, Mössbauer spectroscopy, transmission electron microscopy and magnetization. The as-milled samples showed the formation of an Fe1+YCr2?YO4?δ nanostructured and disordered spinel phase, the α1-Fe(Cr) and α2-Cr(Fe) solid solutions and the presence of non-exhausted precursors. For the samples annealed in inert atmosphere, the chromite (FeCr2O4) formation and the recrystallization of the precursors were verified. The hydrogen treated samples revealed the reduction of the spinel phase, with the phase separation of the chromia phase and retention of the Fe–Cr solid solutions. All the samples, either as-milled or annealed, presented the magnetization versus applied field curves typical for superparamagnetic systems.  相似文献   

19.
《Solid State Sciences》2007,9(10):944-949
A Bi-based oxychloride Na0.5Bi1.5O2Cl with a layered structure as a novel efficient photocatalyst was studied in the present paper. The powder was synthesized by a solid state reaction method. It was characterized by X-ray diffraction, scanning electron microscope and UV–vis diffuse reflectance spectrum. Degradation of methyl orange was used to evaluate the photocatalytic activity. The as-synthesized Na0.5Bi1.5O2Cl has a smaller optical band gap of 3.04 eV than BiOCl (Eg = 3.44 eV). It possesses a fair visible-light-response ability. The UV-induced photocatalytic activity follows the decreasing order of BiOCl > Na0.5Bi1.5O2Cl > TiO2, different from the order of Na0.5Bi1.5O2Cl > TiO2 > BiOCl under visible light irradiation. The dispersion of Pt over Na0.5Bi1.5O2Cl leads to an obvious increase in the photocatalytic performance. The internal electric fields between [Na0.5Bi1.5O2] and [Cl] slabs favor the efficient separation of photostimulated electron–hole pairs.  相似文献   

20.
《Solid State Sciences》2012,14(10):1550-1556
The thermal decomposition approach, reverse micro-emulsion system and surface modification technique had been successfully used to synthesis single magnetic core Fe3O4@Organic Layer@SiO2–NH2 complex microspheres. The magnetization of the magnetic microspheres core could be easily tuned between 28 and 56 emu/g by adjusting the amount of 2-mercaptobarbituric acid. It was found that the Organic Layer to some extent had a protective effect on avoiding Fe3O4 being oxidized into Fe2O3. Each Fe3O4@Organic Layer microsphere could be coated uniformly by about 30 nm of silica shell. The average diameter of the Fe3O4@Organic Layer@SiO2 composites was about 538 nm. The saturation magnetization of the Fe3O4@Organic Layer@SiO2 complex microspheres was 12.5% less than magnetic microspheres cores. The Fe3O4@Organic Layer@SiO2–NH2 composites possessed a huge application potentiality in specificity enriching and separating biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号