首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Ca0.6La0.267TiO3 nanocrystalline powders were successfully synthesized by the sol–gel method using PEG1000 as a dispersant in this study. The sinterability of the powders and the microwave dielectric properties of the ceramics were also investigated. The XRD diffraction result showed that pure Ca0.6La0.267TiO3 powder with orthorhombic perovskite structure could be synthesized at 600 °C for 2 h without any detectable intermediate phase. The average grain size of the as-synthesized powder was as low as 35 nm. Compared with Ca0.6La0.267TiO3 ceramics fabricated by conventional solid-state process, the bulk materials prepared by sintering as-prepared nanopowders performed better in densification and microwave dielectric properties. The ceramics sintered at 1,300 °C exhibited a higher relative density of 98.3% combined with a dielectric constant (ε r ) of 120.3, a quality factor (Q × f) of 23,550 GHz and a temperature coefficient of resonant frequency (τ f ) of +220.7 ppm/°C, respectively.  相似文献   

2.
AgNbO3 powders and ceramics were prepared by aqueous solution-gel method. The phase evolution of the powders was investigated by TG/DSC and XRD. The results showed that the pure AgNbO3 phase was obtained at 600 °C without special treatment. The sintering behavior and dielectric properties of the AgNbO3 ceramics were also investigated. It showed the dense ceramics were obtained as lower as 925 °C, which had the excellent dielectric properties with the permittivity of 291 and dielectric loss of about 1.7% at 1 MHz. The coarse grains were observed for the sample sintered over 975 °C, and then they decreased with the sintering temperature further increasing to 1,050 °C.  相似文献   

3.
《Solid State Sciences》2012,14(7):914-919
Indium oxide co-doped with tin and zinc (ITZO) ceramics have been successfully prepared by direct sintering of the powders mixture at 1300 °C. This allowed us to easily fabricate large highly dense target suitable for sputtering transparent conducting oxide (TCO) films, without using any cold or hot pressing techniques. Hence, the optimized ITZO ceramic reaches a high relative bulk density (∼ 92% of In2O3 theoretical density) and higher than the well-known indium oxide doped with tin (ITO) prepared under similar conditions. All X-ray diagrams obtained for ITZO ceramics confirms a bixbyte structure typical for In2O3 only. This indicates a higher solubility limit of Sn and Zn when they are co-doped into In2O3 forming a solid-solution. A very low value of electrical resistivity is obtained for [In2O3:Sn0.10]:Zn0.10 (1.7 × 10−3 Ω cm, lower than ITO counterpart) which could be fabricated to high dense ceramic target suing pressure-less sintering.  相似文献   

4.
A lead zirconate titanate (PZT) precursor sol was prepared by a diol sol-gel route and used as a binder for assisting the uniaxial die pressing of PZT powders. The powders, of composition Pb(Zr0.52Ti0.48) O3, were prepared by a two step mixed oxide route using lead carbonate, zirconia and titania starting powders. The densification characteristics of the powders, which were not milled after the final calcination step, were compared to samples prepared using PVA as a conventional binder. Improved sintering behaviour was observed for the novel sol-gel binder system. For example, using a sol concentration, equivalent to 7 wt% of PZT derived from the binder, pellets of 95% theoretical density were obtained after firing at 1150°C for 4 h, whereas for the same firing conditions, samples blended with PVA resulted in a density of only 78% theoretical.  相似文献   

5.
采用溶胶-燃烧法合成了可用于固体氧化物燃料电池(SOFC)的新型固体电解质材料CaZr0.1Ti0.9O3。通过XRD、交流复阻抗等电化学方法对样品的结构、电导性能进行了表征,并考察了材料的烧结性能。结果表明,溶胶-燃烧法可以成功制备出具有良好烧结性能的CaZr0.1Ti0.9O3电解质粉末,1400℃下得到的烧结体的相对密度可达到95%。电性能测试表明CaZr0.1Ti0.9O3烧结体在中温范围内具有较高的氧离子电导率(σ800℃=2.24×10-3 S/cm)、低的电导活化能(0.89 eV);样品的导电性能受烧结温度的影响,合理的控制烧结温度对于获得导电性能优良的CaZr0.1Ti0.9O3电解质材料具有重要作用。  相似文献   

6.
The physical properties, such as electrical or mechanical properties, of Pb[ZrxTi1-x]O3 (PZT) ceramics are strongly influenced by domain-wall motions, which can be tailored via the substitutions of cations within the A and/or B sites of the ABO3 perovskite structure. Different domain mobilities can be achieved by lead and/or oxygen vacancies, according to the valency and ionic radius of the dopants. To quantify the near-surface domain mobility, Nb-doped and undoped PZT (50/50) ceramics were prepared. Surface polishing affected the orientation of ferroelastic 90°-domains at the surface and induced a crystallographic texture of the samples. Soft(Nb-doped) PZT revealed the highest domain mobility, as evidenced by changes in the intensity ratio of the {002} and {200} X-ray reflections.  相似文献   

7.
Bi1.5ZnNb1.5O7 cubic pyrochlore ceramic was successfully prepared by the aqueous solution method. The preparation, microstructure development and dielectric properties of ceramics were investigated. Homogeneous precalcined ceramics powders have a cubic pyrochlore phase after thermal treatment at the temperature as low as 450 °C. The aqueous solution–gel method, which Bi, Zn and Nb ions are chelated to form metal complexes, leading to the formation of cubic pyrochlore phase at low firing temperatures. No detectable intermediary phase such as BiNbO4 or pseudo-orthorhombic pyrochlore is observed in the XRD patterns of ceramics at the sintering temperature range from 850 to 1,000 °C. The dielectric properties study revealed that the ceramics sintered at 900 °C show excellent performance with dielectric constant of 111 and dielectric loss of 2.3871 × 10−4 under 1 MHz at room temperature.  相似文献   

8.
In this study, erbia (Er2O3)-doped Bi2O3 ceramics were prepared from sol–gel derived nanocrystalline powders. The morphological properties were investigated by scanning electron microscopy. X-ray diffraction (XRD) analysis was carried out in order to characterize the phase and crystal structure of the powder samples. Temperature dependent electrical properties were determined by thermogravimetry/differential thermal analyzer (TG/DTA) and 4-point probe techniques. The stable fluorite face centered cubic δ-type phase was observed at room temperature from the XRD result, which was supported by the DTA and temperature dependent electrical conductivity measurements. Electrical conductivity results indicate that there is a transition approximately at 650 °C, which can be attributed to an order–disorder transition (ODT). The activation energy values obtained from the Arrhenius approach for heating and cooling process were presented. Two regimes, corresponding to high temperature region (HTR) and low temperature region (LTR), were observed. As a result of morphological changes during the ODT, the electrical conductivity modifies and the activation energies are different for studied sample at HTR and LTR.  相似文献   

9.
《Solid State Sciences》2000,2(1):149-159
The influence of different additives (TiO2, TiO2/SiO2, CaO/TiO2/SiO2, 2BaO/TiO2/2SiO2) and the mode of their incorporation (spray drying: series 1; mixed-oxide method: series 2) on the sintering behavior and the microstructural and electrical properties of n-doped BaTiO3 ceramics has been investigated. The incorporation of the additives from their aqueous solution by spray drying produces a homogeneous distribution of the additive in the BaTiO3 matrix powder by coating the BaTiO3 particles. This homogeneous distribution significantly lowers the activation energy for the densification process compared with that of the powders of series 2. Dynamic and isothermal dilatometric measurements revealed that the sintering process is considered as a classical solid phase sintering followed by recrystallization of the BaTiO3 matrix particles by a eutectic melt. The densification process is dominated by sliding processes. These sliding processes are caused by the amorphous layer of the additive and by the defect-rich grain boundary layers of the BaTiO3 grains generated intermediately by diffusion processes and reactions of the matrix material with the additive forming the secondary phases Ba2TiSi2O8 and Ba4Ti13O30, respectively. In series 1, ceramics with a homogeneous microstructure and useful electrical properties (e.g. low resistivity at room temperature) were already produced at a sintering temperature of 1280°C (with SiO2-containing additives) due to the homogeneous distribution of the additive. The ceramics of series 2 sintered at the same temperature could only be obtained in poor quality. At higher sintering temperatures the differences between the two series vanished.  相似文献   

10.
Substituted lanthanum manganites with the general formula A1−x B x MnO3 (A = La, B = Ca, Sr…) have attracted a lot of attention due to their exceptional electric and magnetic properties. In this work, pure and Ca2+, Sr2+-doped LaMnO3 (LMO) with the concentrations of dopants 30% Ca2+ (LCMO), 30% Sr2+ (LSMO) and 15% Ca2+ + 15% Sr2+ (LCSMO) (in mol. %) were synthesized by polymerizable complex method. Bulk samples were prepared by sintering at 1300 °C for 4 h in oxygen atmosphere. It was found that sintering in oxygen atmosphere enables preparation of single phase ceramics with rhombohedral crystal structure. Chemically prepared fine, submicronic precursor powders provided uniform microstructure and grain size distribution in final ceramics. As a result, pure and doped LMO ceramics with excellent microstructural and magnetic properties were obtained. Depending on the composition, magnetic measurements showed high saturation magnetizations (up to 93 emu/g), with values of the Curie temperature in the range 180–390 K and magnetoresistance up to 67%.  相似文献   

11.
BaBi2Nb2O9 powders and their ceramics were prepared by aqueous solution?Cgel method. The phase evolution and microstructure of samples including powders and ceramics were determined by X-rays, SEM. An homogenous BaBi2Nb2O9 powder was observed after thermal treatment at the temperature as low as 400?°C. The texture phenomena has been observed in the ceramics during the process of sintering, the size and area of oriented grains increased with increase the sintering temperature, and the grain growth occurs in preferential direction which is parallel to the plane of the ceramic plate. The density of this ceramics has been determined, the study revealed that the density increases with sintering temperature and reached a maximum at 1,000?°C and then decreases gradually. The characteristic diffuse phase transition of the BaBi2Nb2O9 ceramics was observed at about 200?°C.  相似文献   

12.
Porous ceramics based on Ca3(PO4)2 (TCP) was obtained by sintering of a mixture of hydroxyapatite (HAp) and brushite (CaHPO4·2H2O) powders. The main interaction of HAp + CPP (Ca2P2O7) → TCP type in the composite sample HAp/brushite takes place at temperatures higher than 700 °C and leads to rather uniform porous microstructure. We have suggested that CPP-like phases (and especially K2CaP2O7) undergo partial decomposition accompanied by evaporation of P2O5. The role of KCl—the by-product of solution synthesis of HAp and brushite powder precursors, consists in (i) it replace in part Ca in CPP phase making last one more reactive, (ii) it switches sintering of the ceramics in liquid-phase regime, (iii) at higher temperature it evaporates and, thus, contributes to formation of pores in the ceramics.  相似文献   

13.
Cobalt manganese oxide spinels Mn3−xCoxO4 (with 0.98?x?3) were prepared by the thermal decomposition in air of oxalate precursors. The influence of the thermal treatments on the structure of these materials is emphasized. Single-phase ceramics were obtained after optimization of the sintering parameters. A precise phase diagram for the Co-Mn-O system is proposed according to thermal stability and structure of oxide powders. The electrical measurements on single-phase ceramics show that low values of resistivity can be achieved. The conduction could take place through jumps of polarons between Mn3+ and Mn4+ on octahedral sites. These compounds present interesting electrical characteristics for negative temperature coefficient (NTC) thermistor applications.  相似文献   

14.
In the present study, the electrical properties of BiFeO3 ceramic specimens prepared by solid-state sintering method by using two thermal treatment strategies are comparatively investigated. The room temperature XRD pattern shows perovskite single-phase, in the limit of XRD accuracy, for BiFeO3 ceramic prepared by single-step method. For two-step sintering method sample small amounts of secondary Bi2Fe4O9 phases were identified. The ceramics show a non-homogeneous microstructure, consisting of ceramic grains with irregular morphology and interconnected porosity mainly in the grain boundary regions in the case of two-step sintering sample. The most interesting feature is the conduction anomaly observed on the conductivity in the low-frequency range close to dc-conductivity. The Arrhenius plot of the dc-conductivity determined at the lowest frequency vs. 1/T shows two distinct linear regions separated by the mentioned temperature range of (189–244) K, for which the dc conductivity could not be determined from the present impedance spectroscopy data only. It is clear that in the mentioned temperature range (for both samples), a conduction anomaly takes place.  相似文献   

15.
In the present work, cordierite glass–ceramic with stoichiometric composition containing 5 wt% CaO and different amounts of B2O3 was prepared by sol–gel processing. The powders were synthesized by tetraethyl orthosilicate (TEOS), magnesium and aluminum chlorides. Crystallization and sintering behavior of glass–ceramics was investigated at different temperatures. Different steps of phase transformations to cordierite have been studied by DSC and XRD. Various phases have been formed at different heat-treatment temperatures. The results showed that adding 1 wt% B2O3 led to a decrease in both the glass transition temperature (Tg) and the crystallization peak temperature (Tp). In contrast, with increasing B2O3 content from 1 to 3 and 5 wt%, both Tg and Tp of samples increased. The results of sintering showed that crystallization before complete sintering hindered good sintering. However, low content of B2O3 relatively improved sintering than the others.  相似文献   

16.
The Nd-doped BaTiO3 nanocrystalline powders and ceramics with different Ti/Ba ratios were prepared by sol-gel method. Phases and microstructures of the Nd-doped BaTiO3 based powders and ceramics were characterized by XRD, SEM and TEM methods. The results revealed that the powders synthesized by sol-gel method were nanometer scale (30 – 60 nm) and were mainly composed of cubic BaTiO3 with a small amount of BaCO3. After sintering at high temperature, both cubic BaTiO3 and BaCO3 were transformed into tetrahedron BaTiO3 phase. The dielectric properties of the ceramics were also determined and the influence of Ti/Ba ratio on the dielectric properties was discussed. The Tc did not change with the variation of Ti/Ba ratio, while the ?max increased firstly and then decreased. The excess TiO2 is benefit for the modification of ceramics’ microstructure and dielectric properties.  相似文献   

17.
In this research, effects of lead-free bismuth sodium lanthanum titanate (BNLT) addition on structure and properties of lead zirconate titanate (PZT) ceramics were investigated. PZT ceramics with addition of 0.1–3.0 wt%BNLT were fabricated by a solid-state mixed oxide method and sintering at 1050–1200 °C for 2 h to obtain dense ceramics with at least 96% of theoretical density. X-ray diffraction indicated that complete solid solution occurred for all compositions. Phase identification showed both tetragonal and rhombohedral perovskite structure of PZT with no BNLT phase detected. Scanning electron micrographs of fractured PZT/BNLT ceramics showed equiaxed grain shape with both transgranular and intergranular fracture modes. Addition of BNLT was also found to reduce densification and effectively limited grain growth of PZT ceramic. Optimum Hv and KIC values were found to be 4.85 GPa and 1.56 MPa.m1/2 for PZT/0.5 wt%BNLT sample. Among PZT/BNLT samples, room temperature dielectric constant seemed to be improved with increasing BNLT content. The maximum piezoelectric coefficient values were observed in pure PZT ceramic and were slightly decreased in BNLT-added samples. Small reduction of remanent polarization and coercive field in hysteresis loops was observed in BNLT-added samples, indicating a slightly suppressed ferroelectric interaction in this material system.  相似文献   

18.
Sol gel derived indium oxide, In2O3; films were prepared by spin coating technique. The films were dried and sintered at different sintering temperatures (300, 400, 450 and 500 °C) in air. The effect of sintering temperature on the structural, optical and electrical properties of In2O3 thin films was studied. The morphology and structure of the films were analyzed by scanning electron microscope and X-ray diffraction. The films showed a bcc structure that changes its 400-preferential orientation to 222 orientation as the sintering temperature increases from 300 to 500 °C. The optical behavior of the films was studied by measuring the transmission spectra in the wavelength range 200–2,500 nm. Different optical models have been proposed for fitting the transmittance data and simulate the optical constants as well as the film thickness of In2O3 films. The best fitting of the data was obtained by combining the classical Drude and OJL models coupled with the Bruggeman effective medium approximation. The optical parameters of Drude model (plasma frequency and damping constant) are used calculate the electrical properties of the films. The calculated values of the electrical sheet resistance were compared with those measured experimentally by four probes. The correlation between the film orientation change and its optical and electrical properties was discussed.  相似文献   

19.
Ca3Co4O9 (CCO) powder precursors were prepared by the chemical sol–gel route and calcined at various temperatures between 923?K (CCO-923?K) and 1,073?K (CCO-1,073?K). The calcination temperature was found to be a critical factor affecting the microstructure and thermoelectric properties of CCO ceramic bulk samples. The grain size increases with calcination temperature. The nano-crystals with size about 100?nm in the powders calcined at 923?K promote large crystal growth and texture development during sintering. Bulk pellets made from CCO-923?K powder have large crystal grains, uniform grain size distribution, and a high degree of crystal alignment. By contrast, pellets made from CCO powders at higher calcination temperatures have a bimodal distribution of large and small grains and a large amount of randomly oriented grains. Transmission electron microscopy analysis shows that each crystal grain (identified in SEM images) consists of bundles of CCO nano-lamellas. The nano-lamellas within one bundle share the same c-axis orientation and have fiber texture. The electrical resistivity of CCO-923?K is weakly dependent on operating temperature. Compared to the CCO-1,073?K sample, the CCO-923?K sample has the highest power factor, a lower thermal conductivity, and higher electrical conductivity.  相似文献   

20.
Fabrication of ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT) thick films on a Pt/Ti/SiO2/Si substrate using powder-mixing sol-gel spin coating and continuous wave CO2 laser annealing technique to treat the specimens with at a relatively low temperature was investigated in the present work. PZT fine powders were prepared by drying and pyrolysis of sol-gel solutions and calcined at temperatures from 400 to 750°C. After fine powder-containing sol-gel solutions were spin-coated on a substrate and pyrolyzed, CO2 laser annealing was carried out to heat treat the specimens. The results show that laser annealing provides an extremely efficient way to crystallize the materials, but an amorphous phase may also form in the case of overheating. Thicker films absorb laser energy more effectively and therefore melt at shorter periods, implying a significant volume effect. A film with thickness of 1 μm shows cracks and rough surface morphology and it was difficult to obtain acceptable electrical properties, indicating importance of controlling interfacial stress and choosing appropriate size of the mixing powders. On the other hand, a thick film of 5 μm annealed at 100 W/cm2 for 15 s exhibits excellent properties (P r = 36.1 μC/cm2, E c = 19.66 kV/cm). Films of 10 μm form a melting zone at the surface and a non-crystallized bottom layer easily at an energy density of 100 W/cm2, showing poor electrical properties. Besides, porosity and electrical properties of thick films can be controlled using appropriate processing parameters, suggesting that CO2 laser annealing of modified sol-gel films is suitable for fabricating films of low dielectric constants and high crystallinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号