共查询到20条相似文献,搜索用时 15 毫秒
1.
S. Gryś 《Opto-Electronics Review》2011,19(2):234-241
A new kind of thermal contrast, called “filtered contrast” is presented, which allows detecting and characterizing material defects using active thermography under some assumptions on physical and thermal parameters of materials. In opposition to known definitions of the thermal contrast, knowledge about defect-free area is not necessary and this contrast is less sensitive to nonuniformity of heat disposal to the material surface. The measurements were performed on an experimental setup equipped with a ThermaCAM PM 595 infrared camera and frame grabber. The step heating was chosen as heat excitation. The results demonstrate usefulness of the 1D model of heat transfer used for determination of depth of subsurface defects. The influence of the parameter of the smoothing filter, required for filtered contrast implementation, thermal parameters of the tested material and defect on expanded uncertainty of determination of defect depth is also presented. Due to significant complexity of the model of heat transfer, the conditions for the “law of propagation of uncertainty” were not fulfilled and a numerical method, i.e., Monte Carlo simulation is applied for the propagation of distributions. 相似文献
3.
《Infrared Physics & Technology》2006,47(6):451-467
By using quantitative thermal scanning of building surface structures, it is possible to access the temperature field. For further calculation of the heat flux exchanged by these structures with the environment, one must quantify as finely as possible the temperature field on the bodies surfaces. For this purpose we have to take into account that real bodies are not black, which implies that a part of the ambient radiation received by the infrared camera detectors is reflected radiation. In this paper, we present a method to quantify the reflected flux by using an infrared mirror, which allows large surface temperature measurements by infrared thermography under near-ambient conditions with improved accuracy. In order to validate the method, an experimental study was carried out on a multi-layer wall, which simulated an insulation default. A good agreement was noticed between the thermocouple temperatures and the infrared corrected ones. Then, the method is applied to outdoor measurements. 相似文献
4.
Stefan Datcu Laurent Ibos Yves Candau Simone Matteï 《Infrared Physics & Technology》2005,46(6):451-467
By using quantitative thermal scanning of building surface structures, it is possible to access the temperature field. For further calculation of the heat flux exchanged by these structures with the environment, one must quantify as finely as possible the temperature field on the bodies surfaces. For this purpose we have to take into account that real bodies are not black, which implies that a part of the ambient radiation received by the infrared camera detectors is reflected radiation. In this paper, we present a method to quantify the reflected flux by using an infrared mirror, which allows large surface temperature measurements by infrared thermography under near-ambient conditions with improved accuracy. In order to validate the method, an experimental study was carried out on a multi-layer wall, which simulated an insulation default. A good agreement was noticed between the thermocouple temperatures and the infrared corrected ones. Then, the method is applied to outdoor measurements. 相似文献
5.
The objective of this work is to evaluate topographical variation in the ocular surface temperature (OST) among the young, elderly and the subjects wearing contact lens using thermographic methodology. We recorded thermographic sequence lasting of 25 s for each eye. The ocular region in each of the thermal images in the sequence was identified and warped into a standard form. Then, the warped sequence was divided into a number of sub-sequences. A differential image which is an image matrix was obtained from each of these sub-sequences, by subtracting thermal images within the sub-sequence. And the histogram of the differential image was modelled by Gaussian mixture model to discriminate eyelashes from the ocular surface for every thermal image in the sub-sequence. Later, thermal data of eyelashes were eliminated in every thermal image and statistical analysis was performed on the sequences. Finally, topographical profile of each subject group was approximated by equations and illustrated using various temperature profiles. The ocular surface of the young subject was observed to be the warmest, and tear film was determined to play a major role in the topographical and temporal variations in OST. Significant topographical variation was observed among subject groups. Based on our compiled average OST profile (AOSTP), the maximum predictability of the bioheat simulation on ocular model can reach up to 90%. 相似文献
6.
Torras-Rosell A Barrera-Figueroa S Jacobsen F 《The Journal of the Acoustical Society of America》2012,131(5):3786-3793
When sound propagates through a medium, it results in pressure fluctuations that change the instantaneous density of the medium. Under such circumstances, the refractive index that characterizes the propagation of light is not constant, but influenced by the acoustic field. This kind of interaction is known as the acousto-optic effect. The formulation of this physical phenomenon into a mathematical problem can be described in terms of the Radon transform, which makes it possible to reconstruct an arbitrary sound field using tomography. The present work derives the fundamental equations governing the acousto-optic effect in air, and demonstrates that it can be measured with a laser Doppler vibrometer in the audible frequency range. The tomographic reconstruction is tested by means of computer simulations and measurements. The main features observed in the simulations are also recognized in the experimental results. The effectiveness of the tomographic reconstruction is further confirmed with representations of the very same sound field measured with a traditional microphone array. 相似文献
7.
Body temperature in medicine is a parameter indicating abnormal activity of human tissues; it is used to diagnose specific pathologies or as an indicator of the muscle activity during physical exercise.Temperature measurements through infrared thermography have the advantages to be non-invasive and to record temperature data simultaneously from different points on a wide area of the body.The difference between the values of temperature traditionally measured with contact probes or standard technique and the ones measured by thermal imaging lies in the fact that the first produces a scalar value, while the second gives a distribution over a surface. The analysis of thermographic images, with the goal of obtaining a temperature value representative of a specific area, is usually performed by different methods of averaging temperature values inside a selected Region of Interest (Troi and Tot). In this paper the authors present a critical comparison between the methods mainly used in literature in the specific case of a muscular group of calves on a population of 33 healthy subjects. Here, the authors describe an alternative method (Tmax) to obtain a temperature value of a specific area based on maximal temperature detection instead of considering the average temperature on the selected area. No meaningful difference in mean temperature between Troi and Ttot was found (p = 0.9), while temperature values calculated using Tmax were higher than the above methods (p < 0.001). The high correlation among the compared methods prove that they can equally represent temperature trends in cutaneous thermographic analyses. 相似文献
8.
The paper introduces infrared thermography as a non-contact and non-destructive technique that conveniently offers the possibility of evaluating the energy-dissipating ability of soil, generally difficult to be determined using traditional techniques. It allows records and observations in real time of heat patterns produced by the dissipation of energy caused by friction between grains. Such dissipative heat occurs when soil is subjected to vibratory loading exceeding the characteristic threshold, and it evidences the distortion mechanism. This energy dissipation mechanism influences the wave propagation, intergranular attenuation, and dispersion through particles contacts. The infrared thermographic technique, which couples mechanical and thermal energy, offers the potential of directly monitoring the stress state of particle rearrangement and predicting the macroscopic mechanical response of soils subjected to cyclic, dynamic or vibratory loading. In addition, infrared thermography evidences the fuse effect of soil, capable to mitigate significantly the earthquake loading on engineering structures. 相似文献
9.
Yu.A. Astrov L.M. Portsel A.N. Lodygin V.B. Shuman N.V. Abrosimov 《Infrared Physics & Technology》2009,52(1):25-31
Planar extrinsic sulfur-doped silicon detectors for infrared (IR) semiconductor-discharge gap image converters intended for use in high-speed thermography of remote objects have been developed. The detectors were fabricated by high-temperature diffusion of sulfur into silicon wafers from the vapor phase. The dependence of doping efficiency on the sulfur vapor pressure in the course of diffusion was analyzed. The detector fabrication technology was optimized to meet the specific requirements for their operation in the microdischarge devices considered. The detectors were tested in a laboratory setup comprising a blackbody source of IR light, an image converter, and a pulsed CCD camera for recording the converted images. The converter equipped with the detector can provide imaging of objects heated to a temperature, Tmin ≈ 200 °C, with a temporal resolution on the order of 10?6 s and spatial resolution of about 5 lines/mm. 相似文献
10.
The invention of thermography, in the 1950s, posed a formidable problem to the research community: What is the relationship between disease and heat radiation captured with Infrared (IR) cameras? The research community responded with a continuous effort to find this crucial relationship. This effort was aided by advances in processing techniques, improved sensitivity and spatial resolution of thermal sensors. However, despite this progress fundamental issues with this imaging modality still remain. The main problem is that the link between disease and heat radiation is complex and in many cases even non-linear. Furthermore, the change in heat radiation as well as the change in radiation pattern, which indicate disease, is minute. On a technical level, this poses high requirements on image capturing and processing. On a more abstract level, these problems lead to inter-observer variability and on an even more abstract level they lead to a lack of trust in this imaging modality. In this review, we adopt the position that these problems can only be solved through a strict application of scientific principles and objective performance assessment. Computing machinery is inherently objective; this helps us to apply scientific principles in a transparent way and to assess the performance results. As a consequence, we aim to promote thermography based Computer-Aided Diagnosis (CAD) systems. Another benefit of CAD systems comes from the fact that the diagnostic accuracy is linked to the capability of the computing machinery and, in general, computers become ever more potent. We predict that a pervasive application of computers and networking technology in medicine will help us to overcome the shortcomings of any single imaging modality and this will pave the way for integrated health care systems which maximize the quality of patient care. 相似文献
11.
For the long-pulse high-confinement discharges in tokamaks, the equilibrium of plasma requires a contact with the first wall materials. The heat flux resulting from this interaction is of the order of 10 MW/m2 for steady state conditions and up to 20 MW/m2 for transient phases. The monitoring on surface temperatures of the plasma facing components (PFCs) is a major concern to ensure safe operation and to optimize performances of experimental operations on large fusion facilities. Furthermore, this measurement is also required to study the physics associated to the plasma material interactions and the heat flux deposition process. In tokamaks, infrared (IR) thermography systems are routinely used to monitor the surface temperature of the PFCs. This measurement requires an accurate knowledge of the surface emissivity. However, and particularly for metallic materials such as tungsten, this emissivity value can vary over a wide range with both the surface condition and the temperature itself, which makes instantaneous measurement challenging. In this context, the multi-spectral infrared method appears as a very promising alternative solution. Indeed, the system has the advantage to carry out a non-intrusive measurement on thermal radiation while evaluating surface temperature without requiring a mandatory surface emissivity measurement.In this paper, a conceptual design for the multi-spectral infrared thermography is proposed. The numerical study of the multi-channel system based on the Levenberg-Marquardt (LM) nonlinear curve fitting is applied. The numerical results presented in this paper demonstrate the design allows for measurements over a large temperature range with a relative error of less than 10%. Furthermore, laboratory experiments have been performed from 200 °C to 740 °C to confirm the feasibility for temperature measurements on stainless steel and tungsten. In these experiments, the unfolding results from the multi-channel detection provide good performance on temperature measurement, which supports our numerical evaluation and demonstrates the potential feasibility for metallic surface high temperature measurement with this method. 相似文献
12.
Infrared (IR) thermography is applied to study the thermal behavior of laser metal-wire additive manufacturing (AM) in vacuum. IR thermal images are obtained and analyzed. Based upon IR thermography analysis, the thermal cycle, remelting and cooling rate in AM process is discussed. In addition, the width of cladding layer is predicted and defect like lack of fusion is detected. 相似文献
13.
Marco Degidi Diego Nardi Gianluca Sighinolfi Arcangelo Merla Adriano Piattelli 《Infrared Physics & Technology》2012,55(4):279-283
Control of heat dissipation and transmission to the peri-implant area during intra-oral welding is very important to limit potential damage to the surrounding tissue. The aim of this in vitro study was to assess, by means of thermal infrared imaging, the tissue temperature peaks associated with the thermal propagation pathway through the implants, the abutments and the walls of the slot of the scaffold, generated during the welding process, in three different implant systems. An in vitro polyurethane mandible model was prepared with a 7.0 mm v-shape slot. Effects on the maximum temperature by a single welding procedure were studied using different power supplies and abutments. A total of 36 welding procedures were tested on three different implant systems. The lowest peak temperature along the walls of the 7.0 mm v-shaped groove (31.6 ± 2 °C) was assessed in the specimens irrigated with sterile saline solution. The highest peak temperature (42.8 ± 2 °C) was assessed in the samples with a contemporaneous power overflow and premature pincers removal. The results of our study suggest that the procedures used until now appear to be effective to avoid thermal bone injuries. The peak tissue temperature of the in vitro model did not surpass the threshold limits above which tissue injury could occur. 相似文献
14.
本介绍在光热红外检测的基础上发展的超声红外热像技术。该技术利用超声脉冲作为激发源,当超声脉冲在试样上传播的过程中遇到裂纹等缺陷时,缺陷引起超声附加衰减而局部升温。利用红外照相机获取试样表面的温度分布,可显示裂纹等缺陷。超声红外热像技术发挥了超声和红外技术的优点,可实时地检测裂纹等缺陷,在无损评价和检测中有广泛应用。 相似文献
15.
IntroductionWheelchair Users (WCUs) depend on their upper extremities for their daily living. Therefore, it is not unusual to find that shoulder pain (SP) is a problem for WCUs and reduces their participation in sport and leisure activities.ObjectivesThe aims of this study were 1 – to analyse skin temperature measured by infrared thermography (IRT) before (pre-test), one minute after (post-test) and 10 min after (post-10) the kinematic wheelchair propulsion test (T-CIDIF) of athletic wheelchair users; 2 – to evaluate the relationship between shoulder pain (SP) and Skin Temperature Asymmetry (ΔTsk) before and after (pre-test, post-test, post-10) the T-CIDIF, and to relate the SP with the kinematic variables of the T-CIDIF.Participants & interventions/procedureA volunteer sample of 12 wheelchair athletes completed an exercise test (T-CIDIF) in their own wheelchair. It consisted in a 30-s maximum test performed on two rollers. Two linear transducers connected to the rollers registered the number of propulsions, maximum and mean velocity and power of each arm. SP was assessed with the Wheelchair Users Shoulder Pain Index (WUSPI). Skin temperature (Tsk) of the anterior and posterior upper body was measured before and after the T-CIDIF by using an infrared camera. A total of 26 ROIs were evaluated with respect to the opposite side of the body to identify significant (ΔTsk).Results/main outcome measure(s)Significant differences were observed between the Tsk of the post-10 and pre-test in 12 ROIs, and between the post-10 and the post-test in most of the ROIs. These differences are attenuated when the ΔTsk is compared before and after exercise. Tsk tends to initially decrease immediately after the test and then significantly increase after 10 min of completing the T-CIDIF. The ΔTsk vs SP analysis yielded significant inverse relationships (from r = −0.58 to r = −0.71, p < 0.05) in 5 of the 26 ROI. No significant correlations between propulsion variables and SP questionnaire were found. All T-CIDIF variables were significantly correlated with the temperature asymmetries in multiple ROIs (from r = −0.86 to r = −0.58, from p < 0.05 to p < 0.001).ConclusionsThese results present indications that high performance wheelchair athletes exhibit similar capacity of heat production than able-bodied. The thermographic data inversely correlates with the SP and the kinematic variables, but the last is not related to SP. This work contributes to improve the understanding about temperature changes in wheelchair athletes during exercise, and could be used to assess the efficacy of various sports and rehabilitation programs. 相似文献
16.
During the past several years infrared thermography has evolved into a powerful investigative means of thermo-fluid-dynamic analysis to measure convective heat fluxes as well as to investigate the surface flow field behaviour over complicated body shapes. The basic concepts that govern this innovative measurement technique together with some particular aspects linked to its use are herein reviewed. Different operating methods together with their implementations are also discussed. Finally, the capability of infrared thermography to deal with several simple, or complex, fluid flow configurations is analysed. 相似文献
17.
Infrared images are characterized by low signal-to-noise ratio and low contrast. Therefore, the edge details are easily immerged in the background and noise, making it much difficult to achieve infrared image edge detail enhancement and denoising. This article proposes a novel method of Gaussian mixture model-based gradient field reconstruction, which enhances image edge details while suppressing noise. First, by analyzing the gradient histogram of noisy infrared image, Gaussian mixture model is adopted to simulate the distribution of the gradient histogram, and divides the image information into three parts corresponding to faint details, noise and the edges of clear targets, respectively. Then, the piecewise function is constructed based on the characteristics of the image to increase gradients of faint details and suppress gradients of noise. Finally, anisotropic diffusion constraint is added while visualizing enhanced image from the transformed gradient field to further suppress noise. The experimental results show that the method possesses unique advantage of effectively enhancing infrared image edge details and suppressing noise as well, compared with the existing methods. In addition, it can be used to effectively enhance other types of images such as the visible and medical images. 相似文献
18.
B.B. Lahiri S. Bagavathiappan T. Jayakumar John Philip 《Infrared Physics & Technology》2012,55(4):221-235
Abnormal body temperature is a natural indicator of illness. Infrared thermography (IRT) is a fast, passive, non-contact and non-invasive alternative to conventional clinical thermometers for monitoring body temperature. Besides, IRT can also map body surface temperature remotely. Last five decades witnessed a steady increase in the utility of thermal imaging cameras to obtain correlations between the thermal physiology and skin temperature. IRT has been successfully used in diagnosis of breast cancer, diabetes neuropathy and peripheral vascular disorders. It has also been used to detect problems associated with gynecology, kidney transplantation, dermatology, heart, neonatal physiology, fever screening and brain imaging. With the advent of modern infrared cameras, data acquisition and processing techniques, it is now possible to have real time high resolution thermographic images, which is likely to surge further research in this field. The present efforts are focused on automatic analysis of temperature distribution of regions of interest and their statistical analysis for detection of abnormalities. This critical review focuses on advances in the area of medical IRT. The basics of IRT, essential theoretical background, the procedures adopted for various measurements and applications of IRT in various medical fields are discussed in this review. Besides background information is provided for beginners for better understanding of the subject. 相似文献
19.
The paper discusses an infrared thermography (IRT) based procedure for quantification of annular air-gap in cylindrical geometries. Different annular air-gaps are simulated using aluminum hollow cylinders and solid stainless steel inserts of varying diameters. The specimens are externally heated using a hot air-gun and the temperature of the specimens are monitored during cooling using an infrared camera. The temperature decay during the cooling cycle follows an exponential profile in all the cases where the decay constant is air-gap dependent. The rate of temperature decay is fastest for the empty cases (without inserts) and lower for smaller air-gaps. The system is analyzed using a lumped system model by measuring the temperature over a time scale significantly higher than the transition time of the lumped system. It is observed that the Biot number of the system is less than unity, allowing analysis of the system in terms of a single time constant, neglecting internal temperature transients. It is observed that the time constant of temperature decay increases with decreasing annular air-gap. An empirical relation between the inverse of time constant of temperature decay and annular air-gaps is established. Using this calibration curve, unknown air-gaps up to 20 μm could be measured with good accuracy. Applications of this newly developed technique include detection of misalignment of concentric machineries and determination of fuel-to-clad gap of nuclear reactor fuels. 相似文献
20.
The aim of the present study was to compare infrared thermography and thermal contact sensors for measuring skin temperature during cycling in a moderate environment. Fourteen cyclists performed a 45-min cycling test at 50% of peak power output. Skin temperatures were simultaneously recorded by infrared thermography and thermal contact sensors before and immediately after cycling activity as well as after 10 min cooling-down, representing different skin wetness and blood perfusion states. Additionally, surface temperature during well controlled dry and wet heat exchange (avoiding thermoregulatory responses) using a hot plate system was assessed by infrared thermography and thermal contact sensors. In human trials, the inter-method correlation coefficient was high when measured before cycling (r = 0.92) whereas it was reduced immediately after the cycling (r = 0.82) and after the cooling-down phase (r = 0.59). Immediately after cycling, infrared thermography provided lower temperature values than thermal contact sensors whereas it presented higher temperatures after the cooling-down phase. Comparable results as in human trials were observed for hot plate tests in dry and wet states. Results support the application of infrared thermography for measuring skin temperature in exercise scenarios where perspiration does not form a water film. 相似文献