首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(BiFeO3)1−x –(BaTiO3) x solid solution thin films are grown on Pt/Ti/SiO2/Si substrates by chemical solution deposition method. Films with x = 0.00, 0.05 and 0.10 were prepared by annealing at 500°C. X-ray diffraction patterns indicate that the pure BiFeO3 film adopts random orientation while the solid solution films are highly (100) preferentially oriented. Improved electric property at room temperature was observed in the BaTiO3 incorporated BiFeO3 films. The remanent polarization of the film with x = 0.0, 0.05 and 0.10 are 76.6, 51.9 and 19.7 μC/cm2 respectively under a measuring electric field of 0.94 MV/cm. The BaTiO3 incorporated BiFeO3 films show improved fatigue endurance. By the solid solution with BaTiO3, the leakage current density is reduced effectively.  相似文献   

2.
Core‐shell structured barium titanate‐poly(glycidyl methacrylate) (BaTiO3‐PGMA) nanocomposites were prepared by surface‐initiated atom transfer radical polymerization of GMA from the surface of BaTiO3 nanoparticles. Fourier transform infrared spectroscopy confirmed the grafting of the PGMA shell on the surface of the BaTiO3 nanoparticles cores. Transmission Electron Microscopy results revealed that BaTiO3 nanoparticles are covered by thin brushes (~20 nm) of PGMA forming a core‐shell structure and thermogravimetric analysis results showed that the grafted BaTiO3‐PGMA nanoparticles consist of ~13.7% PGMA by weight. Upon incorporating these grafted nanoparticles into 20 μm‐thick films, the resultant BaTiO3‐PGMA nanocomposites have shown an improved dielectric constant (ε = 54), a high breakdown field strength (~3 MV/cm) and high‐energy storage density ~21.51 J/cm3. AC conductivity measurements were in good agreement with Jonscher's universal power law and low leakage current behavior was observed before the electrical breakdown field of the films. Improved dielectric and electrical properties of core‐shell structured BaTiO3‐PGMA nanocomposite were attributed to good nanoparticle dispersion and enhanced interfacial polarization. Furthermore, only the surface grafted BaTiO3 yielded homogenous films that were mechanically stable. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 719–728  相似文献   

3.
Pb0.97La0.02Zr0.95Ti0.05O3 (PLZT) antiferroelectric thick films of highly preferred-(100) orientation with different thickness were successfully deposited on Pt(111)/Ti/SiO2/Si(100) substrates depending on the sol–gel process technique. The effects of the PLZT thick films in the preparation and electric properties are investigated. The films show polycrystalline perovskite structure with a (100) preferred orientation by X-ray diffractometer analyses. The antiferroelectric nature of the thick films is demonstrated by P (polarization)–E (electric field). The temperature dependence of the dielectric constant and dielectric loss displays the similar behavior in both cases at 100 kHz while the values of polarization characteristic are decreased with the increase of the film thickness. The phase switching current are studied as a function of a gradually change dc electric field and the voltage dependent current density of the most highly (100)-oriented PLZT film is 1.49 × 10−8 A/cm2 over electric field range from 0 to ±261 kV/cm. The film at 2,498 nm exhibits excellent dielectric properties and highly preferred-(100) orientation.  相似文献   

4.

A facile and efficient method for fabrication of magnetic composite microspheres CoFe2O4@TiO2@Au is demonstrated. The shells of anatase TiO2 were coated onto a magnetic CoFe2O4 core via liquid-phase deposition procedure, and then Au nanoparticles were deposited onto CoFe2O4@TiO2 microspheres through seed-mediated growth. XRD, TEM, and VSM were used to investigate the structure, morphology and magnetic properties of the samples, their photocatalytic activity were also tested. Heterostructure of CoFe2O4@TiO2@Au was confirmed by different measurements. Compared to unmodified CoFe2O4@TiO2 microspheres, CoFe2O4@TiO2@Au microspheres showed higher photocatalytic activity for Rhodamine B (RhB) degradation in water.

  相似文献   

5.
Multiferroic (1-x)KNbO3-(x)CoFe2O4 (x = 0.0, 0.25, 0.5, 0.75 and 1.0 mol) composites were prepared by solid state reaction method. X-ray diffraction results showed that the prepared (1-x)KNbO3-(x)CoFe2O4 composites belong to orthorhombic system for x = 0.0 (perovskite KNbO3), cubic system for x = 1.0 (spinel CoFe2O4) and mixed phase of KNbO3 and CoFe2O4 for x = 0.25, 0.5 and 0.75. Nb-O and Fe-O stretching vibrational modes were observed in the Fourier transform and Raman spectral analyses, respectively. The HR-SEM analysis showed that the morphology of KNbO3 and CoFe2O4 composites was significantly modified by CoFe2O4 content. Energy dispersive X-ray spectroscopy results confirmed the presence of K, Nb, Fe, Co and O in (1-x)KNbO3-(x)CoFe2O4 composites. The ionic state of Nb, Co, Fe and O was examined by X-ray photoelectron spectroscopy analysis. The high value of coercivity (Hc = ∼981Oe) for x = 0.5 and the enhanced dielectric constant for x = 0.5 and 0.75 were observed.  相似文献   

6.
In situ base catalyst assisted sol–gel process is used for the synthesis of nanocrystalline CoFe2O4 deposition on SiO2 particles. The SiO2 particles were prepared using base catalyst assisted sol–gel process and the consecutive formation and deposition of nanocrystalline CoFe2O4 on SiO2 particles was monitored using Powder X ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Thermo Gravimetric And Differential Thermal Analysis (TG/DTA), Scanning Electron Microscopy and Energy Dispersive X ray Spectroscopy (SEM–EDS) and High Resolution Transmission Electron Microscopy (HRTEM). The crystallite size of CoFe2O4 is calculated using Scherrer’s formula and it is found to be 8 nm. The HRTEM images and selective area electron diffraction (SAED) results confirmed the formation of nanocrystalline CoFe2O4 particles deposited over SiO2 spheres.  相似文献   

7.
Nanofibers composed of hollow CoFe2O4 nanospheres covered with onion‐like carbon are prepared by applying nanoscale Kirkendall diffusion to the electrospinning process. Amorphous carbon nanofibers embedded with CoFe2@onion‐like carbon nanospheres are prepared by reduction of the electrospun nanofibers. Oxidation of the CoFe2‐C nanofibers at 300 °C under a normal atmosphere produces porous nanofibers composed of hollow CoFe2O4 nanospheres covered with onion‐like carbon. CoFe2 nanocrystals are transformed into the hollow CoFe2O4 nanospheres during oxidation through a well‐known nanoscale Kirkendall diffusion process. The discharge capacities of the carbon‐free CoFe2O4 nanofibers composed of hollow nanospheres and the nanofibers composed of hollow CoFe2O4 nanospheres covered with onion‐like carbon are 340 and 930 mA h g?1, respectively, for the 1000th cycle at a current density of 1 A g?1. The nanofibers composed of hollow CoFe2O4 nanospheres covered with onion‐like carbon exhibit an excellent rate performance even in the absence of conductive materials.  相似文献   

8.
Potentialities of the method of bilayer thin-film electrolyte electrophoretic deposition onto cathodic substrate are analyzed. Ce0.8Sm0.2O1.9–δ (SDC) nanopowder and BaCe0.89Gd0.1Cu0.01O3–δ BCGCuO) micropowder are prepared by the methods of laser evaporation–condensation and pyrolysis, respectively. The effect of ultrasonic treatment on the SDC and BCGCuO particle distribution in suspensions and their electrokinetic properties are studied. The using of the ultrasonic treatment combined with centrifugation allowed obtaining an aggregative-stable suspension of the BaCe0.89Gd0.1Cu0.01O3–δ micron particles in the isopropanol–acetylacetone mixed medium (70/30 v/v) that is characterized by high zeta potential. Ce0.8Sm0.2O1.9–δ and BaCe0.89Gd0.1Cu0.01O3–δ thin films are obtained at the La2NiO4 +δ cathode substrate using electrophoretic deposition; microstructure and electric properties of the prepared thin-film structures are studied. The conductivity and electric properties of the bilayer electrolyte were found to be determined by the Ce0.8Sm0.2O1.9–δ film properties. Despite the sintering high temperature, the grain structure of the BaCe0.89Gd0.1Cu0.01O3–δ film is underdeveloped; this is determined by the micron powder properties.  相似文献   

9.
CoFe2O4/TiO2 magnetic composite films were prepared using the sol-gel method with tetrabutyltitanate and metallic chlorates as starting materials. The effects of heat treatment temperatures on microstructures and on magnetic properties were studied. The microstructure and properties of the samples at different heat treatment temperatures were characterized by X-ray diffraction, Raman spectrum, scanning electron microscopy, polarized microscopy and vibrating sample magnetometry. The results show that crystals of different substances grow up independently. Cobalt ferrite is evenly embedded into the titanium dioxide matrix in the prepared composite films. The magnetism of the composite films is enhanced with an increase of the heat temperature.  相似文献   

10.
BaTiO3 and PZT films were prepared from alkoxide-acetate solutions containing polyvinylpyrrolidone (PVP) by non-repetitive dip-coating. It was demonstrated that PVP incorporated in gel films suppresses crack formation during heating and increases the critical thickness, the maximum thickness achievable without crack formation via single-step deposition. Using PVP crack-free BaTiO3 and PZT films 1.2 and 0.5 m in thickness could be prepared, respectively, via single-step dip-coating. The films were fairly transparent and dense in microstructure. The tensile stress in heat-treated BaTiO3 films was also demonstrated to decrease significantly by incorporating PVP in gel films.  相似文献   

11.
We adopted an electrophoretic deposition method for the preparation of thin layers of insoluble composite nanoparticles composed of TiO2 core and about 2 nm thick shell of polythiophene, prepared by oxidative polymerization of thiophene. The reduced form of TiO2-polythiophene composite material was deposited on the conductive surface from an ultrasonically generated microdispersion. Varying the dispersion media, applied voltage and the electrode arrangement made it possible to control the quality and morphology of the films. Compact semitransparent films deposited on ITO electrodes, suitable for photoelectrical measurements, were obtained within short deposition times.  相似文献   

12.
Randomly oriented ferroelectric BaTiO3 and (Ba0.6Sr0.4) TiO3 thin films on platinum coated Si (100) were prepared by a sol-gel method. The precursor solutions were derived from barium hydroxide or a mixture of barium/strontium hydroxides dissolved in acetic acid and titanium butoxide. Polarization versus applied voltage hysteresis studies indicated a remanent polarization of 3 µC/cm2 and a coercive field of 43.4 kV/cm for BaTiO3 films annealed at 800°C for 1 h. Corresponding parameters for (Ba0.6Sr0.4)TiO3 films annealed at 800°C were found to be 7.2 µC/cm2 and 102.7 kV/cm, respectively. Microstructural study of the surface morphology of these films indicated grains of less than 0.1 µm in size. The leakage current for (Ba0.6Sr0.4)TiO3 films was found to be two orders of magnitude lower than that for BaTiO3 films.  相似文献   

13.
A new high efficient and green protocol for the preparation of dihydropyrimido[4,5‐b]quinolinetrione derivatives using magnetically solid acid catalyst was presented. High performance solid acid catalyst was prepared through a three‐step reaction. Firstly, CoFe2O4 nano particles were synthesized using co‐precipitation method. In second step, CoFe2O4 nano particles were coated with SiO2 shell through treatment with tetraethyl orthosilicate (CoFe2O4@SiO2). Finaly, CoFe2O4@SiO2 was modified with polyphosphoric acid (CoFe2O4@SiO2/PPA) in a simple manner. Green reusable catalyst was characterized in details using FTIR, VSM, TEM, FESEM, EDX and used as catalyst for the synthesis of dihydropyrimido[4,5‐b]quinolinetrione derivatives. Reaction was performed under ultrasonic irradiation as green, effective and mild conditions and products were achieved in high to excellent yields. Green and eco‐friendly conditions, short reaction times with high yield of products in addition to easy workup are some merits of presented method.  相似文献   

14.
The electrorheological (ER) effects of BaTiO3 or other perovskite materials with high dielectric constant are presumed to be large. However, their weak ER activity is very puzzling. In this study, we choose cubic BaTiO3 and first achieve its ER enhancement under dc electric field by modifying its intrinsic structure with doping rare earth Y ions, which are synthesized by means of sol-gel technique. DSC-TG, FT-IR, XRD, ICP and XPS techniques are used to characterize thermal, structure and component change of materials. It is demonstrated that Y3+ substitutes for Ba2+, which causes lattice-distorting defects. Rheological experiments show that Y-doped BaTiO3 suspension has notable ER effect and clear fibrillation structure under dc electric field, while the pure cubic BaTiO3 suspension suffers from electrophoretic effects and its ER effect is very weak. The ER effect of typical Y-doped BaTiO3 ER suspension is ten times that of pure BaTiO3 ER suspension. Based on the electrical measurements, the enhancement of ER activity of BaTiO3 may be attributed to the increase of conductivity due to Y-doping. The enhancement in ER activity of cubic BaTiO3 under dc electric field by doping rare earth Y ions is helpful to further understand the perovskite-based ER materials with high dielectric constant but low ER activity.  相似文献   

15.
Composite photocatalysts of CuO/CoFe2O4‐TiO2 were successfully synthesized by a sol‐gel method and fixed on ordinary tiles. The photosterilization of Escherichia coli was examined on CuO/CoFe2O4‐TiO2 thin films under a xenon lamp irradiation. The film was characterized by XRD, and the morphology was observed by SEM. Disinfection data indicated that CuO/CoFe2O4‐TiO2 composite photocatalysts have the much better photocatalytic activity than CuO/CoFe2O4 and TiO2. The optimized composition of the nanocomposites has been found to be mCuO/CoFe2O4:mTiO2=3:7, with loadings ranging from 790 to 1400 mg/m2. The photocatalytic inactivated rate of E. coli (105 CFU/mL) reached 98.4% under the xenon lamp of 150 W within 30 min.  相似文献   

16.
Pb(Zr0.25Ti0.75)O3 (PZT25) thin films were prepared on LaNiO3-coated thermally oxidized silicon substrates by chemical solution deposition method, where LaNiO3 electrodes were also prepared by a chemical solution deposition technique. The dielectric constant and dielectric loss of the PZT25 thin films were 570 and 0.057, respectively. The remanent polarization and coercive field were 20.11 μC/cm2 and 60.7 kV/cm, respectively. The PZT25 thin films on LaNiO3-coated thermally oxidized silicon substrates showed improved fatigue characteristics compared with their counterparts on plantium-coated silicon substrates.  相似文献   

17.
Nano-sized nickel ferrite (NiFe2O4) and cobalt ferrite particles (CoFe2O4) were successfully synthesized using a hydrothermal method. Techniques of X-ray diffraction, scanning electron microscope, Fourier transform infrared spectrometer, energy dispersive X-ray spectroscopy, vibrating sample magnetometer and transmission electron microscope have been used to characterize and study the as-synthesized NiFe2O4 and CoFe2O4 products. The results showed that the average size of the nickel and cobalt ferrite nanoparticles is smaller than 10 and 100 nm, respectively. The results of magnetic measurement showed that the synthesized NiFe2O4 and CoFe2O4 nanoparticles were superparamagnetic and soft ferromagnetic materials, respectively. Study of adsorption behavior showed that these nanoparticles can act as a good adsorbent for removing Pb2+.  相似文献   

18.
Ferroelectric Ba(Sn0.05Ti0.95)O3 (BTS) thin films were deposited onto Pt/Ti/SiO2/Si substrates by sol–gel technique with a 100 nm thick LSCO buffer layer. The influence of buffer layer on the phase and microstructure of the thin films was examined. Dielectric properties of the thin films were investigated as a function of frequency and direct current (DC) electric field. The results show that the LSCO buffer layer had a marked effect on the dielectric properties of the BTS films. The BTS thin films with LSCO buffer layer had enhanced dielectric properties.  相似文献   

19.
Single-step sol–gel deposition was attempted for realizing submicron thick, (001) oriented Pb(Zr0.53Ti0.47)O3 (PZT) thin films, using an alkoxide solution containing polyvinylpyrrolidone (PVP). A solution of molar composition, Pb(NO3)2:Zr(OC3H7 n)4:Ti(OC3H7 i)4:PVP:H2O:CH3COCH2COCH3:CH3OC2H4OH:C3H7 nOH = 1.1:0.53:0.47:0.5:5:0.5:22:0.98, was prepared as a coating solution. Gel films were prepared on Pt(111)/TiO2/SiO2/Si(100) substrates by spin-coating, and calcined at 350 °C and annealed at 650 °C either in an electric furnace or in a near-infrared (IR) furnace. When calcined in the near-IR furnace, the films became (001) oriented on annealing. When calcined in the electric furnace, on the other hand, the films became randomly oriented on annealing. These observations indicate that the heating the gel films from the substrate side in the calcination step at 350 °C induces crystallographic orientation in the annealing step at 650 °C. The effects of the heating methods on the thermal decomposition of the gel films, and the microstructure and dielectric properties of the fired films were studied. Finally 0.4 μm thick, (001) oriented PZT films could be successfully prepared by non-repetitive, single-step deposition. The oriented film thus obtained had the remnant polarization 2P r of 39 μC/cm2 and the dielectric constant ε′ of 960 ± 169.  相似文献   

20.
Fe-Co/CoFe2O4 nanocomposite and CoFe2O4 nanopowders were prepared by the hydrothermal method. The structure of magnetic powders were characterized by X-ray diffraction diffractometer (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), thermal gravity analysis (TGA) and differential thermal analysis (DTA) analysis, X-ray photoelectron spectrometry (XPS), and Fourier transform infrared spectra (FTIR) techniques, while magnetic properties were determined by using a vibrating sample magnetometer (VSM) at room temperature. The effects of hydrothermal reaction conditions on magnetic properties were also discussed in details. The values of saturation magnetization (Ms) and coercive fore (Hc) for Fe-Co/CoFe2O4 nanocomposite are 113 emu/g and 1.4 kOe, respectively. Furthermore, CoFe2O4 ferrite with a single-domain critical size of 70 nm was fabricated by controlling the hydrothermal reaction conditions carefully, which presents high coercive force (ca. 4.6 kOe) and high squareness ratio (ca. 0.65). One interesting thing is Ms value of CoFe2O4 ferrite with a diameter of 40 nm is 86 emu/g which is comparable to that of the bulk counterpart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号