首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report a novel all-fiber narrow-bandwidth intermodal Mach–Zehnder interferometer (MZI) based on a long-period fiber grating (LPFG) combined with a fiber bitaper, and the MZI has no special limit for the resonant wavelength of the LPFG. Its responses to temperature and axial strain are studied theoretically and experimentally. Experimental results indicate that the temperature sensitivity is 0.0585 nm/°C within the temperature range from 30 °C to 90 °C and the axial strain sensitivity of 0.00013 nm/με can be neglected. Furthermore, as only the common single-mode fiber (SMF) is required during the fabrication process, the proposed device is cost effective and has good practicability in the optical sensing systems.  相似文献   

2.
Cadmium stannate thin films were prepared by spray pyrolysis technique using cadmium acetate and tin(II) chloride precursors at substrate temperatures 450 °C and 500 °C. XRD pattern confirms the formation of orthorhombic (1 1 1) cadmium stannate phase for the film prepared at substrate temperature of 500 °C, whereas, films prepared at 450 °C are amorphous. Film formation does not occur at substrate temperature from 300 to 375 °C. SEM images reveal that the surface of the prepared Cd2SnO4 film is smooth. The average optical transmittance of ∼86% is obtained for the film prepared at substrate temperature of 500 °C with the film thickness of 400 nm. The optical band gap value of the films varies from 2.7 to 2.94 eV. The film prepared at 500 °C shows a minimum resistivity of 35.6 × 10−4 Ω cm.  相似文献   

3.
Nanocrystalline tin oxide (SnO2) powders were synthesized through wet chemical route using tin metal as precursor. The morphology and optical properties, as well as the effect of sintering on the structural attributes of SnO2 particles were analyzed using Transmission electron microscopy (TEM), UV–visible spectrophotometry (UV–vis) and X-ray diffraction (XRD), respectively. The data revealed that the lattice strain plays a significant role in determining the structural properties of sintered nanoparticles. The particle size was found to be 5.8 nm, 19.1 nm and 21.7 nm for samples sintered at 300 °C, 500 °C, and 700 °C, respectively. Also, the band gaps were substantially reduced from 4.1 eV to 3.8 eV with increasing sintering temperatures. The results elucidated that the structural and optical properties of the SnO2 nanoparticles can be easily modulated by altering sintering temperature during de novo synthesis.  相似文献   

4.
We report a temperature sensor based on a Bragg grating written in a benzil dimethyl ketal (BDK) doped multimode (MM) polymer optical fiber (POF) for the first time to our knowledge. The thermal response was further analyzed in view of theory and experiment. In theory, with the order of the reflected mode increasing from 1st to 60th order, for MM silica fiber Bragg grating (FBG) the temperature sensitivity will increase linearly from 16.2 pm/°C to 17.5 pm/°C, while for MM polymer FBG the temperature sensitivity (absolute value) will increase linearly from ?79.5 pm/°C to ?104.4 pm/°C. In addition, temperature sensitivity of MM polymer FBG exhibits almost 1 order larger mode order dependence than that of MM silica FBG. In experiment, the Bragg wavelength shift will decline linearly as the temperature rises, contrary to that of MM silica FBG. The temperature sensitivity of MM polymer FBG is ranged from ?0.097 nm/°C to ?0.111 nm/°C, more than 8 times that of MM silica FBG, showing great potential used as a temperature sensor.  相似文献   

5.
By deposition of metallic vanadium on FTO substrate in Argon atmosphere at room temperature, the sample was then annealed in furnace for 2 h at the temperature of 410 °C in air ambient. (1 1 0) -orientated vanadium dioxide films were prepared on the FTO surface. A maximum transmittance of ∼40% happened at 900–1250 nm region at room temperature. The change of optical transmittance at this region was ∼25% between semiconducting and metallic states. In particular, vanadium dioxide thin films on FTO exhibit semiconductor–metal phase transition at ∼51 °C, the width of the hysteresis loop is ∼8 °C.  相似文献   

6.
We propose an efficient approach to develop large-range liquid level sensors based on an extrinsic Fabry–Perot optical fibre interferometer with an all fused-silica structure and CO2 laser heating fusion bonding technology. The sensor exhibits signatures of a high sensitivity of 5.3 nm/kPa (36.6 nm/psi), a resolution of 6.8 Pa (9.9×10−4 psi) and an extreme low temperature dependence of 0.013 nm/°C. As a result, a high resolution of the water level measurement of approximately 0.7 mm on the length scale of 5 m and small errors of the water pressure measurement induced by the temperature dependence within 0.0025 kPa/°C (0.00036 psi/°C, water level 0.25 mm/°C) are achieved, thus providing useful applications for the detection of the large-range liquid level in harsh environments.  相似文献   

7.
A Regenerated Fibre Bragg Grating (RFBG), with repeatable high temperature response between 400 °C–1200 °C, has been demonstrated using a hydrogen-loaded, highly germanium-doped, photosensitive fibre. A wavelength shifts of as much as 20 nm is attained during temperature calibration up to 1300 °C. A large temperature response of 17 pm/°C is obtained from the RFBG, with very good repeatability.  相似文献   

8.
A novel method for simultaneous measurement of refractive index and temperature based on a small core and cladding diameters thinned fiber Mach–Zehnder interferometer (MZI) using singlemode-multimode-thinned-multimode-singlemode (SMTMS) fiber structure is proposed. Experiments indicate that the selected two interference orders have sensitivities of ?16.1936 nm/RIU and 0.0534 nm/°C, and ?23.0473 nm/RIU and 0.0575 nm/°C, respectively, among RI range from 1.3325–1.3720 and temperature range from 22 °C–82 °C. We can thus use the coefficient matrix of these two peaks to simultaneously determine the surrounding refractive index and temperature. The fabrication is easy, safe and cost effective, includes only the fusion splicing, making the device properly attractive for practical sensor applications.  相似文献   

9.
The pyrolytic decomposition of layered basic zinc acetate (LBZA) nanobelts (NBs) into nanocrystalline ZnO NBs is investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL). We also report on the gas sensing response of the resulting ZnO nanomaterial to CO. The LBZA NBs are grown at 65 °C in an aqueous solution of zinc acetate dihydrate. AFM and SEM results show as-grown products possess the characteristic layered structure of the LBZA crystals. XRD and XPS results show that annealing as-grown products at 210 °C in air causes a transformation from zinc acetate to nanocrystalline ZnO NBs via thermal decomposition. The ZnO crystalline domain size increases with temperature from 9.2 nm at 200 °C to 94 nm at 1000 °C, as measured from XRD. SEM shows evidence of sintering at 600 °C. The thickness of the NBs, determined via AFM, ranges from 10 to 50 nm and remains approximately constant with annealing temperature. XPS confirmed the chemical transformation from zinc acetate to ZnO and showed a significant remaining zinc hydroxide component for the ZnO NBs consistent with published results. PL measurements at room temperature show a blue shift in peak emission as the nanobelts change from LBZA to ZnO at 200 °C. Above this transition temperature, the ZnO nanobelts possess strong band edge emission at 390 nm and little broad band emission in the visible region. The AFM and SEM images reveal that the crystallites within the nanobelts orientate in rows along the long axis during annealing. This structure provides a high surface area to volume ratio of aligned nanoparticles which is beneficial for gas sensing applications. Gas sensors fabricated from 400 °C annealed nanobelts showed a response of 1.62 when exposed to 200 ppm of CO in dry air at 400 °C, as defined by the ratio of resistance before and during exposure. This indicates that ZnO nanostructures obtained by thermal decomposition of LBZA NBs could provide a cost effective route to high sensitivity gas sensors.  相似文献   

10.
The effect of sintering temperature on ZnO varistor properties is investigated in the range of 700–1400 °C. The increase of sintering temperature does not influence the well-known peaks related to hexagonal wurtzite structure of ZnO ceramics, whereas the average grain size is increased from (1.08 to 2.1 μm). With increasing sintering temperature up to 1200 °C, the nonlinear region is clearly observed in the I–V characteristics, whereas this region is completely absent only for the sample sintered at 1400 °C. As the sintering temperature increased, the breakdown field decreased over a wide range from 2838.7 to 6.41 V/cm, while the nonlinear coefficient is increased in the range of (23.86–47.76). Furthermore, the barrier height decreased from 1.76 to 0.974 eV, whereas electrical conductivity is improved. On the other hand, the optical band gap is gradually decreased in the range of 3.08–2.70 eV with increasing sintering temperature. These results showed a strong correlation between sintering temperature and the properties of ZnO ceramic varistor.  相似文献   

11.
We fabricated an electronically controlled polymer optical fiber cleaver, which uses a razor-blade guillotine and provides independent control of fiber temperature, blade temperature, and cleaving speed. To determine the optimum cleaving conditions of microstructured polymer optical fibers (mPOFs) with hexagonal hole structures we developed a program for cleaving quality optimization, which reads in a microscope image of the fiber end-facet and determines the core-shift and the statistics of the hole diameter, hole-to-hole pitch, hole ellipticity, and direction of major ellipse axis. For 125 μm in diameter mPOFs of the standard polymer PMMA we found the optimum temperatures to be 77.5 °C for both blade and fiber. For 280 μm in diameter mPOFs of the humidity insensitive polymer TOPAS® (grade 8007) the optimum temperature was 40° for both blade and fiber. A 100 μm thick flat-edge blade was found to minimize the core-shift by the cleaving to only 298 nm or 5% of the pitch for the PMMA mPOF at the optimal temperature.  相似文献   

12.
《Surface science》2003,470(1-2):193-200
We have conducted photoemission electron microscope (PEEM) and Auger electron spectroscopy (AES) studies on the Cu(30 nm)/3C–SiC(1 0 0) and Cu(30 nm)/Si(1 0 0) samples annealed successively up to 850 °C. With PEEM, lateral diffusion of Cu atoms on the 3C–SiC substrate was observed at 400 °C while no lateral diffusion was seen for the Cu/Si(1 0 0) samples up to 850 °C. The 30 nm Cu thin film on 3C–SiC began to agglomerate at 550 °C, similar to the case for the Cu/Si(1 0 0) system. No further spread of the lateral diffusion region was found in subsequent annealing up to 850 °C for Cu/3C–SiC while separated regular-sized dot structures were found at 850 °C for Cu/Si(1 0 0). AES studies of Cu/Si(1 0 0) system showed partial interface reaction during Cu deposition onto the Si(1 0 0) substrate and oxidation of the resultant Cu3Si to form SiO2 on the specimen surface at room temperature in air. Surface segregation of Si and C was observed after annealing at 300 °C for Cu/Si(1 0 0) and at 850 °C for the Cu/3C–SiC system. We have successfully elucidated the observed phenomena by combining PEEM and AES considering diffusion of the constituent elements and/or reaction at interfaces.  相似文献   

13.
The raw ZrO2 is annealed at 600–1550 °C for 6 h. It is found that the emission at 492 nm increases greatly when the annealing temperature is higher than 1200 °C and its afterglow shows a small improvement at 1200–1450 °C and a large enhancement after annealing at 1550 °C. The results that are obtained indicate that the impurity Ti4+ in ZrO2 is efficiently reduced to Ti3+ when the temperature is higher than 1200 °C, and the increase of Ti3+ centers contributes to the large improvement of emission at 492 nm. The thermoluminescence shows that at least two types of traps with different depths (0.65 eV and 1.46 eV) corresponding to oxygen vacancies exist in monoclinic ZrO2. After annealing at 1200–1450 °C, some new trap clusters related to oxygen vacancies and Ti3+ form and causes the small improvement of afterglow at 1200–1450 °C. The large improvement of afterglow after annealing at 1550 °C originates from the sharp increase of proper shallow traps (0.65 eV) in ZrO2. Accordingly, we present the feasible interpretations and luminescence mechanisms of monoclinic ZrO2 for our observations.  相似文献   

14.
The present study reports the influence of pre-carbonization on the properties of KOH-activated coal tar pitch (CTP). The change of crystallinity and pore structure of pre-carbonized CTPs as well as their activated carbons (ACs) as function of pre-carbonization temperature are investigated. The crystallinity of pre-carbonized CTPs increases with increasing the carbonization temperature up to 600 °C, but a disorder occurs during the carbonization around 700 °C and an order happens gradually with increasing the carbonization temperatures in range of 800–1000 °C. The CTPs pre-carbonized at high temperatures are more difficult to be activated with KOH than those pre-carbonized at low temperatures due to the increase of micro-crystalline size and the decrease of surface functional groups. The micro-pores and meso-pores are well developed at around 1.0 nm and 2.4 nm, respectively, as the ACs are pre-carbonized at temperatures of 500–600 °C, exhibiting high specific capacitances as electrode materials for electric double layer capacitor (EDLC). Although the specific surface area (SSA) and pore volume of ACs pre-carbonized at temperatures of 900–1000 °C are extraordinary low (non-porous) as compared to those of AC pre-carbonized at 600 °C, their specific capacitances are comparable to each other. The large specific capacitances with low SSA ACs can be attributed to the structural change resulting from the electrochemical activation during the 1st charge above 2.0 V.  相似文献   

15.
In2O3 films have been deposited using chemical spray pyrolysis technique at different substrate temperatures that varied in the range, 250–450 °C. The structural and morphological properties of the as-deposited films were studied using X-ray diffractometer and scanning electron microscope as well as atomic force microscope, respectively. The films formed at a temperature of 400 °C showed body-centered cubic structure with a strong (2 2 2) orientation. The structural parameters such as the crystallite size, lattice strain and texture coefficient of the films were also calculated. The films deposited at a temperature of 400 °C showed an optical transmittance of >85% in the visible region. The change of resistivity, mobility, carrier concentration and activation energies with the deposition temperature was studied. The highest figure of merit for the layers grown at 400 °C was 1.09 × 10−3 Ω−1.  相似文献   

16.
《Ultrasonics sonochemistry》2014,21(6):2092-2098
This study showed that temperature influences the rate of separation of fat from natural whole milk during application of ultrasonic standing waves. In this study, natural whole milk was sonicated at 600 kHz (583 W/L) or 1 MHz (311 W/L) with a starting bulk temperature of 5, 25, or 40 °C. Comparisons on separation efficiency were performed with and without sonication. Sonication using 1 MHz for 5 min at 25 °C was shown to be more effective for fat separation than the other conditions tested with and without ultrasound, resulting in a relative change from 3.5 ± 0.06% (w/v) fat initially, of −52.3 ± 2.3% (reduction to 1.6 ± 0.07% (w/v) fat) in the skimmed milk layer and 184.8 ± 33.2% (increase to 9.9 ± 1.0% (w/v) fat) in the top layer, at an average skimming rate of ∼5 g fat/min. A shift in the volume weighted mean diameter (D[4,3]) of the milk samples obtained from the top and bottom of between 8% and 10% relative to an initial sample D[4,3] value of 4.5 ± 0.06 μm was also achieved under these conditions. In general, faster fat separation was seen in natural milk when natural creaming occurred at room temperature and this separation trend was enhanced after the application of high frequency ultrasound.  相似文献   

17.
Thermal effects on the optoelectrical characteristics of green InGaN/GaN multiple quantum well (MQW) light-emitting diodes (LEDs) have been investigated in detail for a broad temperature range, from 30 °C to 100 °C. The current-dependent electroluminescence (EL) spectra, current–voltage (IV) curves and luminescence intensity–current (LI) characteristics of green InGaN/GaN MQW LEDs have been measured to characterize the thermal-related effects on the optoelectrical properties of the InGaN/GaN MQW LEDs. The experimental results show that both the forward voltages decreased with a slope of ?3.7 mV/K and the emission peak wavelength increased with a slope of +0.02 nm/K with increasing temperature, indicating a change in the contact resistance between the metal and GaN layers and the existence of a band gap shrinkage effect. The junction temperature estimated from the forward voltage and the emission peak shift varied from 25.6 to 14.5 °C and from 22.4 to 35.6 °C, respectively. At the same time, the carrier temperature decreased from 371.2 to 348.1 °C as estimated from the slope of high-energy side of the emission spectra. With increasing injection current, there was found to be a strong current-dependent blueshift of ?0.15 nm/mA in the emission peak wavelength of the EL spectra. This could be attributed to not only the stronger band-filling effect but also the enhanced quantum confinement effect that resulted from the piezoelectric polarization and spontaneous polarization in InGaN/GaN heterostructures. We also demonstrate a helpful and easy way to measure and calculate the junction temperature of InGaN/GaN MQW LEDs.  相似文献   

18.
Direct experimental measurements of the thermo-optic for fixed temperature intervals (20–200 °C, 200–500 °C, 500–660 °C, 660–780 °C) in fused silica fiber containing fiber Bragg gratings (FBGs) were conducted. The diffraction efficiency of a FBG fluctuated with temperature between 2.01 × 10? 4 and 0.17 × 10? 4 while the temperature shift of the Bragg's peak was monitored between 1300 and 1311 nm with sub-Angstrom precision. Numerical simulations were focused on FBG's diffraction efficiency calculations accounting for the temperature drift of the gratings, and found to be in excellent agreement with obtained experimental data.It was found that the first-order thermo-optic coefficient changes between 1.29 and 1.85 × 10? 5 K? 1 for the linear fit and at T = 0 °C its value was found to be close to 2.37 × 10? 5 K? 1 for the polynomial fit of experimental data. The average thermo-optic coefficient undergoes a minimum in the vicinity of 440 °C. Additional observation indicates a negative sign of the second-order thermo-optic coefficient. The value of thermal expansion coefficient was much less (0.5 × 10? 6 K? 1) than that for the average thermo-optic coefficient. Based on the energy dispersive spectroscopy it was determined that thermal erasing of the FBGs at a temperature around 780 °C corresponds to germanium monoxide diffusion out of core in silica-based fibers.  相似文献   

19.
A high performance multiplexed fiber-optic sensor consisted of diaphragm-based extrinsic Fabry–Perot interferometer (DEFPI) and fiber Bragg grating (FBG) is proposed. The novel structure DEFPI fabricated with laser heating fusion technique possesses high sensitivity with 5.35 nm/kPa (36.89 nm/psi) and exhibits ultra-low temperature dependence with 0.015 nm/°C. But the ultra-low temperature dependence still results in small pressure measurement error of the DEFPI (0.0028 kPa/°C). The designed stainless epoxy-free packaging structure guarantees the FBG to be only sensitive to temperature. The temperature information is created to calibrate the DEFPI's pressure measurement error induced by the temperature dependence, realizing effectively temperature self-compensation of the multiplexed sensor. The sensitivity of the FBG is 10.5 pm/°C. In addition, the multiplexed sensor is also very easy to realize the pressure and the temperature high-precise high-sensitive simultaneous measurement at single point in many harsh environmental areas.  相似文献   

20.
Zn1−xMnxO thin films have been synthesized by chemical spray pyrolysis at different substrate temperatures in the range, 250–450 °C for a manganese composition, x = 15%, on corning 7059 glass substrates. The as-grown layers were characterized to evaluate their chemical and physical behaviour with substrate temperature. The change of dopant level in ZnO films with substrate temperature was analysed using X-ray photoelectron spectroscope measurements. The X-ray diffraction studies revealed that all the films were strongly oriented along the (0 0 2) orientation that correspond to the hexagonal wurtzite structure. The crystalline quality of the layers increased with the increase of substrate temperature up to 400 °C and decreased thereafter. The crystallite size of the films varied in the range, 14–24 nm. The surface morphological studies were carried out using atomic force microscope and the layers showed a lower surface roughness of 4.1 nm. The optical band gap of the films was ∼3.35 eV and the electrical resistivity was found to be high, ∼104 Ω cm. The films deposited at higher temperatures (>350 °C) showed ferromagnetic behaviour at 10 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号