首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Supported Ni Cu bimetallic catalysts have been produced in-situ on commercial Al2O3 by using layered double hydroxides as precursors. The resulting catalysts show a uniform Ni and Cu distribution, thus providing good activity and selectivity in the reforming reaction of n-heptane. The catalytic performance has been found to depend on the Cu/Ni ratio, revealing the synergic catalysis between homogeneously dispersed Ni and Cu sites. The good catalysis of Ni Cu bimetallic cata...  相似文献   

2.
以新制备的Mg(OH)_2和Al(OH)_3滤饼与对苯二甲酸通过水热反应制备了对苯二甲酸插层水滑石(TALDHs).使用X射线衍射(XRD)、热重-差热分析、扫描电镜(SEM)等技术对TA-LDHs与碳酸根型水滑石(CO3-LDHs)进行对比研究,结果显示,对苯二甲酸离子成功插入到LDHs层间,产物结构完整、晶相单一,所制得的TA-LDHs为片状.CO3-LDHs和TA-LDHs分别作为纳米填料,以两种不同的添加方式制备聚对苯二甲酸乙二醇酯(PET)/LDHs纳米复合材料.对复合材料进行XRD和SEM研究,结果表明在酯交换反应前添加2%TA-LDHs所制备的PET/LDHs纳米复合材料的层板被部分剥离,分散性最好.  相似文献   

3.
The layered double hydroxide Mg2Al(OH)6(C12H25SO4) was delaminated to give high levels of inclusion in acrylate monomers; subsequent polymerisation of the monomers containing the LDH dispersion gave polyacrylates with the inorganic component still in the delaminated form.  相似文献   

4.
Ni-Al LDHs was electrodeposited from a NiCl2-AlCl3 solution. In order to analyze the electrodeposition process, electrolytes with initial Al content range of 0–20% were used. With increasing Al content in the sample, the preferred orientations of (0 0 3) and (0 0 6), increased crystallinity, and decreased interlayer spacing were observed from the XRD results. A dissolution–recrystallization of (0 0 3) plane was detected among the Ni-Al LDHs from the strongly alkaline solution soaking results, which was found to be conducted easily in high Al-containing samples. The pH of the Al-containing electrolyte was much lower than that of pure NiCl2 solution because lower pH was needed to start a precipitation reaction in the AlCl3-NiCl2 solution. The electrodeposition yield and current efficiency were found to decrease obviously in the electrolytes with initial Al content higher than 10%, which was attributed to the increasing Al content in the sample and diffusion of the complex ions. The electrodeposition pattern was in-situ in the electrolyte initially containing 10% Al, then, it developed toward and off in-situ in electrolytes initially containing 0–10% and 10–20% Al.  相似文献   

5.
Nanocomposites of poly(p-dioxanone) (PPDO) with unmodified and organically modified layered double hydroxide (LDH) have been prepared by melt extrusion method. Dodecyl sulfate was used as organic modifier. The morphology of nanocomposites was analyzed by X-ray diffraction and transmission electron microscopy and their thermal properties by differential scanning calorimetry and thermogravimetric analysis. It has been found that the organic modifier decisively influences the nanocomposite morphology, resulting in a higher level of exfoliation. In addition, the glass transition temperature of nanocomposites was slightly higher than in case of unfilled PPDO. Moreover, the crystallization was delayed by LDH incorporation. The above behavior was ascribed to interactions between carbonyl groups of polymer matrix and hydroxyl groups of LDH, as supported by Fourier transformed infrared analysis. Interestingly, two different crystallization processes have been observed in the nanocomposite of PPDO and organically modified LDH. Unmodified and organo-modified LDH, practically did not alter the final melting point of PPDO. However, the thermal decomposition behavior was clearly influenced by the morphology exhibited by nanocomposites.  相似文献   

6.
The treatment of nano-ordered oriented films of layered double hydroxide (LDH) with dodecyl sulfate increased the interlayer distance from 0.4 to 1.96 nm, which allowed the intercalation of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS). The re-stacking of separated layers and the rebuilding of crystals oriented parallel to the surface of quartz slides was confirmed by X-ray diffraction and atomic force microscopy. The hybrid films contained homogeneously distributed porphyrin molecules with preserved photophysical properties such as fluorescence, triplet state formation, and energy transfer, thus forming singlet oxygen.  相似文献   

7.
Anionic surfactant and silane modified layered double hydroxides (LDHs) were synthesized through an in situ coprecipitation method. The structure and morphology were characterized by XRD and TEM techniques, and their thermal decomposition processes were investigated using infrared emission spectroscopy (IES) combined with thermogravimetry (TG). The surfactant modified LDHs (H-DS) shows three diffractions located at 1–7° (2θ), while there is only one broad reflection for silane grafted LDHs (H–Si) in this region. The morphologies of the H-DS and H–Si show fibrous exfoliated layers and curved sheets, respectively. The IES spectra and TG curves indicate that alkyl chain combustion and dehydroxylation are overlapped with each other during heating from 373 to 723 K in H-DS and to 873 K in H–Si. Sulfate anion transformation process occurs at 473 K in H-DS and 523 K in H–Si. The derivant of sulfate can exist even above 1073 K. After further decomposition, the metal oxides and the new type of Si–O compounds are formed beginning at around 923 K in silane modified sample.  相似文献   

8.
In order to attain the controlled release of fragrance, the intercalation of cyclodextrins (CDs) and fragrance in layered double hydroxides (LDHs) was examined. Carboxymethyl-β-CDs (CMCDs) of various degrees of substitution as well as Mg–Al support were synthesized. CMCDs were intercalated into LDH by the reconstruction method. Powder X-ray diffraction, thermal gravimetric analyses and Fourier transform infrared indicated a successful intercalation of CMCDs into the LDH gallery. The retention capacities of the hybrid materials were investigated in aqueous phase and in gaseous solution by static headspace gas chromatography and multiple headspace extraction. The functionalization of the LDH with CMCD allowed the encapsulation of various organic guests and could prolong the fragrance release time in comparison to that from LDH without CMCD, which can be attributed to the inclusion of the fragrance compound in the CMCD cavity.  相似文献   

9.
Polystyrene/layered double hydroxides (PS/LDHs) nanocomposites were prepared by free radical polymerization of styrene monomer in the presence of LDHs intercalated with 4,4′-azobis(4-cyanopentanoate) anions (LDH-ACPA). XRD and ATR-IR are used to confirm that the materials produced are layered and the presence of the azo-initiator anions in these LDHs. These LDHs were used successfully to polymerize styrene and both XRD and TEM images of the composites support the formation of a mixed exfoliated-intercalated nanocomposite for ZnAl-ACPA but a microcomposite for MgAl-ACPA. The magnesium-containing LDHs decreased the glass transition temperature (Tg) of the composites while ZnAl-ACPA did not affect Tg significantly. The Tg depression is related to enhanced polymer dynamics due to the extra free volume at the LDH additive-polymer interface. A reduction in the onset of thermal decomposition temperature was observed in PS/LDH compared to neat PS, likely due to the early decomposition of the LDH. The fire performance, as evaluated by the cone calorimeter, reveal that PS-ZnAl-ACPA shows enhanced fire properties compared to PS-MgAl-ACPA.  相似文献   

10.
The preparation of new layered double hydroxides/unsaturated polyester (LDH/UP) nanocomposites was performed and the effect of LDH on the resin properties was studied. Two different organo-LDHs have been prepared, adipate-LDH (A-LDH) and 2-methyl-2-propene-1-sulfonate-LDH (S-LDH); in order to evaluate the influence of these nanofillers, samples with two different concentrations were dispersed in the matrix. The physical, thermal, mechanical and fire reaction properties of nanocomposites were studied. Intercalated layered structures were observed for the different organo-LDH loadings (1 and 5 wt%). Mechanical properties studied under flexural tests show that incorporation of organo-LDH in the resin reduces the flexural strength of polyester resin while the flexural modulus is unchanged for the S-LDH/UP composites and increased with 1 wt% of A-LDH. Adding 1 wt% of A-LDH to the resin produces an important reduction on the flexural strength, but an increase of the flexural modulus. The study of fire reaction properties, using cone calorimeter, suggested a significant reduction in the UP flammability, by 46 and 32%, by incorporating 1 wt% of A-LDH and 5 wt% S-LDH, respectively. Mass loss curves show enhanced char formation with the different loads tested while the amount of evolved smoke remains quite unchanged.  相似文献   

11.
A mechano-hydrothermal (MHT) method was used to synthesize Li-Al-OH layered double hydroxides (LDHs) from LiOH·H2O, Al(OH)3 and H2O as starting materials. A two-step synthesis was conducted, that is, Al(OH)3 was milled for 1 h, followed by hydrothermal treatment with LiOH·H2O solution. Effects of the LiOH/Al(OH)3 molar ratio (RLi/Al) and hydrothermal temperature (Tht) on the crystallinity, morphology, and composition of the product were examined. The resulting LDHs were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared, and elemental analyses. The results showed that pre-milling plays a key role in the LDH formation during subsequent hydrothermal treatment. The Li/Al molar ratio of the obtained LDHs keeps constant at 0.5, independent from theRLi/Al (0.5–5.0) in the starting materials. An increase in the Tht (20–80 °C) can enhance the crystallinity and morphology regularity of the products. The so-obtained Li-Al-OH LDHs exhibit high crystallinity and well-dispersity, which may have wider applications than the aggregate ones obtained using conventional mechanochemical and Li+-imbibition methods.  相似文献   

12.
13.
Novel nanocomposites from poly(L ‐lactide) (PLLA) and an organically modified layered double hydroxide (LDH) were prepared using the melt‐mixing technique. The structure and crystallization behavior of these nanocomposites were investigated by means of wide‐angle X‐ray diffraction (WAXD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and polarized optical microscopy (POM). WAXD results indicate that the layer distance of dodecyl sulfate‐modified LDH (LDH‐DS) is increased in the PLLA/LDH composites, compared with the organically modified LDH. TEM analysis suggests that the most LDH‐DS layers disperse homogenously in the PLLA matrix in the nanometer scale with the intercalated or exfoliated structures. It was found that the incorporation of LDH‐DS has little or no discernable effect on the crystalline structure as well as the melting behavior of PLLA. However, the crystallization rate of PLLA increases with the addition of LDH‐DS. With the incorporation of 2.5 wt % LDH‐DS, the PLLA crystallization can be finished during the cooling process at 5 °C/min. With the addition of 5 wt % LDH‐DS, the half‐times of isothermal melt‐crystallization of PLLA at 100 and 120 °C reduce to 44.4% and 57.0% of those of the neat PLLA, respectively. POM observation shows that the nucleation density increases and the spherulite size of PLLA reduces distinctly with the presence of LDH‐DS. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2222–2233, 2008  相似文献   

14.
Layered double hydroxides with the hydrotalcite-like structures, containing Mg2+ and Al3+, doped with Cr3+ and Y3+, have been prepared by precipitation at constant pH. The weight percentages of Cr3+ and Y3+ were 1, 2, or 3%, and 0.5 or 1%, respectively. Single phases were obtained in all cases, whose crystallinity decreased as the content in Cr and Y was increased. The solids have been characterised by element chemical analysis, powder X-ray diffraction, thermal analyses (differential, thermogravimetric and programmed reduction), FT-IR and UV–vis spectroscopies; the specific surface areas have been determined from nitrogen adsorption isotherms at −196 °C. Upon calcination at 1200 °C for 5 h in air all solids display a mixed structure (spinel and rock salt for MgO); these solids have also been characterised by these techniques and their chromatic coordinates (CIE – L*a*b*) have been determined. Their pink colour makes these solids suitable for being used as ceramic pigments.  相似文献   

15.
Co-Mn-Al layered double hydroxides (LDHs) with various Co:Mn:Al molar ratios (4:2:0, 4:1.5:0.5, 4:1:1, 4:0.5:1.5, and 4:0:2) were prepared and characterized. Magnesium containing LDHs Co-Mg-Mn (2:2:2), Co-Mg-Mn-Al (2:2:1:1), and Co-Mg-Al (2:2:2) were also studied. Thermal decomposition of prepared LDHs and formation of related mixed oxides were studied using high-temperature X-ray powder diffraction and thermal analysis. The thermal decomposition of Mg-free LDHs starts by their partial dehydration accompanied by shrinkage of the lattice parameter c from ca. 0.76 to 0.66 nm. The dehydration temperature of the Co-Mn-Al LDHs decreases with increasing Mn content from 180 °C in Co-Al sample to 120 °C in sample with Co:Mn:Al molar ratio of 4:1.5:0.5. A subsequent step is a complete decomposition of the layered structure to nanocrystalline spinel, the complete dehydration, and finally decarbonation of the mixed oxide phase. Spinel-type oxides were the primary crystallization products. Mg-containing primary spinels had practically empty tetrahedral cationic sites. A dramatic increase of the spinel cell size upon heating and analysis by Raman spectroscopy revealed a segregation of Co-rich spinel in Co-Mn and Co-Mn-Al specimens. In calcination products obtained at 500 °C, the spinel mean coherence length was 5-10 nm, and the total content of the X-ray diffraction crystalline portion was 50-90%. These calcination products were tested as catalysts in the total oxidation of ethanol and decomposition of N2O. The catalytic activity in ethanol combustion was enhanced by increasing (Co+Mn) content while an optimum content of reducible components was necessary for high activity in N2O decomposition, where the highest conversions were found for calcined Co-Mn-Al sample with Co:Mn:Al molar ratio of 4:1:1.  相似文献   

16.
Carboxylate-intercalated (terephthalate, TA and oxalate, ox) layered double hydroxides (LDHs) are aged under a microwave-hydrothermal treatment. The influence of the nature of the interlayer anion during the ageing process is studied. Characterization results show that the microwave-hydrothermal method can be extended to synthesize LDHs with anions different than carbonate, like TA. LDH-TA compounds are stable under microwave irradiation for increasing periods of time and the solids show an improved order both in the layers and in the interlayer region as evidenced by powder X-ray diffraction (PXRD), 27Al MAS NMR and FT-IR spectroscopy. Furthermore, cleaning of the surface through removal of some organic species adsorbed on the surface of the particles also occurs during the microwave-hydrothermal treatment. Conversely, although the expected increase in crystallinity is observed in LDH-ox samples, the side-reaction between Al3+ and ox is also enhanced under microwave irradiation, and a partial destruction of the structure takes place with an increase in the M2+/M3+ ratio and consequent modification of the cell parameters.  相似文献   

17.
Four phosphonate anions (methyl-, ethyl-, phenyl- and benzylphosphonate) were successfully incorporated into [Cu2Cr(OH)6]Cl·yH2O. It was found that two phases exist for the phenylphosphonate intercalate; one in which the anions are arranged perpendicular to the layers, and one with a tilted orientation. Systematic variation of the reaction conditions allowed the former to be isolated with phase purity, but not the latter. The solid-state 31P NMR data suggest that proton transfer may occur between host and guest. Some neutral guest is incorporated in the case of phenylphosphonate and benzylphosphonate, presumably owing to relatively poor solvation of these guests. Heat treatments only resulted in the formation of a covalent bond between host and guest in the case of the methylphosphonate intercalate. The intercalation of the related and redox-active phenylphosphinate into a range of LDHs is also reported. Time-resolved in situ diffraction techniques were used to both monitor and quantify the intercalation of phenylphosphonate into [Cu2Cr(OH)6]Cl·yH2O and phenylphosphinate into the hexagonal form of [LiAl2(OH)6]Cl·yH2O. Kinetic and mechanistic parameters have been determined from the diffraction data.  相似文献   

18.
19.
A novel single-step approach was developed to prepare large-scale MgAl-LDHs ultrathin nanosheets. The key point of the successful realization was that we employed a high concentration of H(2)O(2). Oxygen molecules, derived from in situ decomposition of H(2)O(2), were speculated to be the decisive factor leading to complete separation of LDHs layers. The ultrathin nanosheets were characterized by XRD, TEM, AFM, FT-IR, and TG-DSC. The results indicated that the thickness of these nanosheets was about 1.44 nm, which was almost in perfect agreement with the theoretical thickness of two LDHs layers. From the TG-DSC curves, the weight loss of these exfoliated MgAl-LDHs ultrathin nanosheets at 500°C was 18.5%, which was much smaller compared to the 32.3% weight loss of unexfoliated MgAl-LDHs.  相似文献   

20.
Intercalation of dodecyl sulfate into layered double hydroxides   总被引:1,自引:0,他引:1  
The intercalation of sodium dodecyl sulfate and exchange of dodecyl sulfate anion into layered double hydroxides has been examined by means of X-ray diffraction, infrared and thermogravimetric procedures. Three types of derivatives were obtained having mean interlayer spacings of 26 Å, 36 Å and 47 Å, respectively. These interlayer distances did not correlate with the amount of organic incorporated between the layers but, as shown by computer simulations, depended upon the orientation of the chains within the interlamellar space. In several reactions both intercalation of neutral sodium dodecyl sulfate as well as exchange of the dodecyl anion took place. Attempts to remove the alkyl sulfate chains with dilute acid resulted in dissolution of the more basic metals producing non-stoichiometric layered products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号