首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wu CD  Lin W 《Inorganic chemistry》2005,44(5):1178-1180
A family of homochiral 1D cadmium(II) coordination polymers based on the (S)-2,2'-dimethoxy-1,1'-binaphthyl-3,3'-bis(4-vinylpyridine) (L) bridging ligand were synthesized from the same building blocks under slightly different conditions, and characterized by single-crystal X-ray crystallography. While [CdL(DMF)4](ClO4)2 x EtOH x 0.5H2O (1) adopts a 1D zigzag chain structure, [CdL2(ClO4)2] x 3EtOH x H2O (2) and [CdL2(ClO4)(H2O)] (ClO4) x 1.5(o-C6H4Cl2) x 3EtOH x 6H2O (3) both exhibit 1D polymeric structures that are built from 38-membered macrocycles. These 1D coordination polymers further pack into chiral porous frameworks via pi...pi interactions with a large percentage of void spaces that are occupied by solvent molecules and counterions.  相似文献   

2.
Two new cadmium(II) coordination polymers, {[Cd(L1)(tbta)]·H2O} n (1) and [Cd(L2)(tbta)] n (2) (L1 = 1,4-bis(5,6-dimethylbenzimidazol-1-ylmethyl)benzene, H2tbta = tetrabromoterephthalic acid and L2 = 1,4-bis(2-methylbenzimidazol-1-ylmethyl)benzene) are obtained under hydrothermal conditions and structurally characterized by single crystal X-ray diffraction methods, IR spectroscopy, TGA and elemental analysis. The L1 and L2 ligands differ by subtle variation of substituents at semi-rigid bis(benzimidazole) bakcbones. Complex 1 features a 3D threefold interpenetrating dia array with a 4-connected 66 topology. Complex 2 displays a 2D {44.62} sql/Shubnikov tetragonal plane network. Complexes 1 and 2 possess high thermal stabilities and promising fluorescence behavior in the solid state.  相似文献   

3.
Two ligands, 2-{5,5-dimethyl-3-[2-(pyridin-3-yl)-ethenyl]cyclohex-2-enylidene}propanedinitrile (L1) and 2-{5,5-dimethyl-3-[2-(pyridin-2-yl)-ethenyl]cyclohex-2-enylidene}propanedinitrile (L2), were synthesized. By reaction of mercury thiocyanate with L1 and L2, respectively, coordination polymers [Hg(L1)(μ1,3-SCN)2]n (1), [Hg(L1)2(μ1,3-SCN)2]n (2), and [Hg(L2)(μ1,3-SCN)(SCN)]n (3) with different structures and topologies were obtained. In 1, the thiocyanate shows μ1,3-SCN bridging coordination, and adjacent Hg(II) ions are bridged by two μ1,3-SCN ions to form an infinite chain with the remaining position of five-coordinate Hg(II) occupied by L1. In 2, the thiocyanate has the same coordination as 1. However, Hg(II) has octahedral coordination with two L1 involved in coordination. An unusual feature of 3 is the presence of two types of thiocyanates, one has a S-terminal ligand and the other has a μ1,3-SCN bridge. The mercury(II) in 3 is four-coordinated by L2 and three thiocyanates. Luminescent properties and thermal stabilities of 1–3 were studied.  相似文献   

4.
Metal–organic frameworks (MOFs) have potentially useful applications and an intriguing variety of architectures and topologies. Two homochiral coordination polymers have been synthesized by the hydrothermal method, namely poly[(μ‐N‐benzyl‐L‐phenylalaninato‐κ4O,O′:O,N)(μ‐formato‐κ2O:O′)zinc(II)], [Zn(C16H16NO2)(HCOO)]n, (1), and poly[(μ‐N‐benzyl‐L‐leucinato‐κ4O,O′:O,N)(μ‐formato‐κ2O:O′)zinc(II)], [Zn(C13H18NO2)(HCOO)]n, (2), and studied by single‐crystal X‐ray diffraction, elemental analyses, IR spectroscopy and fluorescence spectroscopy. Compounds (1) and (2) each have a two‐dimensional layer structure, with the benzyl or isobutyl groups of the ligands directed towards the interlayer interface. Photoluminescence investigations show that both (1) and (2) display a strong emission in the blue region.  相似文献   

5.
Compounds [CdLCl2] n (1) and {[Cd(L)2(ClO4)]·ClO4} n (2), where L?=?1,3-bis(5,6-dimethylbenzimidazol-1-ylmethyl)benzene, have been synthesized by hydrothermal method, and characterized by element analysis, IR spectra, Powder XRD, and X-ray crystallographic diffraction. Cd(II) in 1 and 2 are both trigonal bipyramidal. Different cadmium salts of chloride and perchlorate lead to different configurations of [Cd2L2]2+, trans-form in 1 but trans and cis-forms in 2. The 1-D beaded chains of 1 are further linked to generate a 3-D supramolecular architecture by strong π–π stacking interactions as well as intermolecular C–H?···?Cl hydrogen bonds. In 2, the 1-D beaded chains are further assembled by intermolecular C–H?···?O hydrogen bonds to form a 2-D layer. Solid-state fluorescent properties of 1 and 2 were investigated at room temperature.  相似文献   

6.
Three cadmium(II) coordination polymers, [CdBr2(L1)] n (1), [CdI2(L2)] n (2), and Cd2Br4(L3)2 (3), where L1?=?1,3-bis(5,6-dimethylbenzimidazole)propane, L2?=?1,4-bis(5,6-dimethylbenzimidazole)butane, and L3?=?1,6-bis(5,6-dimethylbenzimidazole)hexane, have been synthesized by hydrothermal methods and characterized by elemental analyses, IR spectra, TGA, PXRD, and X-ray crystallographic diffraction. Complex 1 contains a 1-D helical chain in which CdBr2 units are linked by L1. For 2, each CdI2 is connected by two different conformations of L2 to form a 1-D zigzag chain. For 3, each CdBr2 is linked by L3 bridges to afford a binuclear structure. These results indicate that the spacer length of the ligands play important roles in assembly of Cd(II) coordination polymers. Thermogravimetric analyses and solid-state luminescent properties of the complexes have also been investigated.  相似文献   

7.
A series of mixed-ligand coordination complexes, namely [Zn(CA)(2)(BIE)] (1), [Zn(OX)(BIE)].H(2)O (2), [Zn(2)(m-BDC)(2)(BIE)(2)] (3), [Cd(m-BDC)(BIE)] (4), [Cd(5-OH-m-BDC)(BIE)] (5), [Zn(5-OH-m-BDC)(BIE)] (6), [Zn(2)(p-BDC)(2)(BIE)(2)].2.5H(2)O (7), [Cd(3)(p-BDC)(3)(BIE)] (8), [Cd(3)(BTC)(2)(BIE)(2)].0.5H(2)O (9) and [Zn(BTCA)(0.5)(BIE)] (10), where CA = cinnamate anion, OX = oxalate anion, m-BDC = 1,3-benzenedicarboxylate anion, 5-OH-m-BDC = 5-OH-1,3-benzenedicarboxylate anion, p-BDC = 1,4-benzenedicarboxylate anion, BTC = 1,3,5-benzenetricarboxylate anion, BTCA = 1,2,3,4-butanetetracarboxylate anion, and BIE = 2,2'-bis(1H-imidazolyl)ether, were synthesized under hydrothermal conditions. In 1, a pair of BIE ligands bridge adjacent Zn(II) atoms to give a centrosymmetric dimer. In 2 and 3, BIE ligands connect Zn(II)-carboxylate chains to form hexagonal honeycomb 6(3)-hcb and square 4(4)-sql layers, respectively. In 4 and 5, m-BDC and 5-OH-m-BDC bridge Cd(II) atoms to give dimeric units, respectively, which are further linked by BIE ligands to form sql nets. In 6, the BIE ligands extend the Zn(II)-carboxylate chains into 2D sinusoidal-like sql nets. The undulated sql nets polycatenate each other in the parallel manner with DOC (degree of catenation) = 2, yielding a rare 2D --> 3D parallel polycatenation net. In 7, the BIE and p-BDC ligands link the Zn(ii) atoms to give a rare 3-fold interpenetrated 3-connected 10(3)-ths net. 8 contains unusual edge-sharing polyhedral rods formed by [Cd(3)(CO(2))(6)] clusters. Each rod is connected by the benzene rings of p-BDC in four directions into a simple alpha-Po topology. In 9, two kinds of different 2D Cd-BTC layers are alternately linked to each other by sharing Cd(ii) centers to form a 3D framework, which is further linked by two kinds of BIE ligand to produce a complicated 3D polymeric structure. 10 possesses a unique (3,4)-connected 3D framework with (8(3))(2)(8(5).10) topology. The structural differences described indicate the importance of carboxylate ligands and metals in the framework formation of coordination complexes. The infrared spectra, thermogravimetric and luminescent properties were also investigated in detail for the compounds.  相似文献   

8.
Reaction of 1,4-benzenedicarboxylic acid (1,4-H(2)BDC) with EuCl(3).6H(2)O in MeOH in the presence of Et(3)N and MeCN gives a mixture of the 3-D metal-organic-framework (MOF) materials [Eu(2)(1,4-BDC)(3)(MeOH)(4)].8MeOH () and 2-D [Eu(1,4-BDC)(MeOH)(4)].Cl.MeOH.0.25H(2)O (). Similar reactions afforded the isomorphous Gd () and Tb () analogs of . Reaction of 1,4-H(2)BDC with Ln(NO(3))(3).6H(2)O under similar conditions gave [Ln(BDC)NO(3)(MeOH)(2)].MeCN.H(2)O (Ln = Eu () and Gd ()), which have 2-D framework structures. The structures of were determined by single crystal X-ray crystallographic studies and the luminescence properties of and in DMF solution were determined.  相似文献   

9.
Four new d10 heterometallic coordination polymers have been obtained using three Schiff-base ligands, zinc(II) nitrate, and dicyanometallates: 1[{Zn3(Salen)2}{μ-Au(CN)2}2] (1); 1[Zn(Saldmen){μ-Ag(CN)2}]·2H2O (2); 1[Zn(Salampy){μ-Ag(CN)2}] (3); 1[Zn(Salampy){μ-Au(CN)2}] (4). The Schiff bases are obtained from condensation of salicylaldehyde with ethylenediamine (H2Salen); N,N-dimethyl-ethylenediamine (HSaldmen) and, respectively, 2-aminomethyl-pyridine (HSalampy). The dicyanometallates are K[Ag(CN)2] and K[Au(CN)2]. The compounds were characterized by X-ray single-crystal diffraction, infrared spectroscopy, UV–vis spectroscopy, and elemental analysis. In compound 1, the homotrimetallic units, {Zn3(salen)2}2+, are connected by two [Au(CN)2]? bridges, forming a 1-D double chain. In compounds 24, the crystal structures show polymeric zigzag chains generated by the mononuclear zinc(II) nodes and [M(CN)2]? spacers. The luminescence properties of the new heterometallic polymers have also been investigated.  相似文献   

10.
The new cadmium coordination polymer [Cd(bim)2(dca)2]n (1), (bim?=?benzimidazole, dca?= dicyanamide) was synthesized and characterized by IR, thermogravimetric analysis and luminescent properties. The coordination geometry of cadmium atom is distorted octahedral, coordinated equatorially by four nitrogen atoms from four dicyanamide ligands, and axially by two nitrogen atoms from two benzoimidazoles. Each dca ligand links two cadmium(II) atoms and 1 forms a two-dimensional (4,4) network.  相似文献   

11.
The coordination chemistry of a rigid periodinated ligand, 2,3,5,6-tetraiodo-1,4-benzenedicarboxylic acid (H2BDC-I4), with a series of transition metal ions has been explored to afford five new coordination polymers {[M(BDC-I4)(MeOH)4](H2BDC-I4)(MeOH)2} n (M?=?ZnII for 1, CdII for 2, CoII for 3 and MnII for 4) and {[Mn(BDC-I4)(MeOH)4](DMF)} n (5). All these complexes have been characterized by elemental analysis, IR spectroscopy, thermogravimetric (TG) analysis, and X-ray crystallography. Single-crystal X-ray diffraction reveals that complexes 1?C4 are isostructural and have a one-dimensional chain structure. Upon the addition of the solvent DMF, the infinite linear chain array in 4 is converted to a 1-D wave-like chain motif in 5 with a different space group ( $ P\overline{1} $ for 4 and P21/c for 5). The difference between structures 1?C4 and 5 can be attributed to the coordination mode of carboxylate changing from trans to cis fashion. The ZnII and CdII complexes 1 and 2 display similar emissions in the solid state, which essentially are intraligand transitions.  相似文献   

12.
Three new coordination polymers, [Mn(BDC-F4)(DMF)2(H2O)2] n (1), [Ni(BDC-F4)(DMF)(EtOH)] n (2), and [Cd(BDC-F4)(DMF)(EtOH)] n (3), have been synthesized by assembling transition metal salts with the rigid ligand tetrafluoroterephthalic acid (H2BDC-F4) in mixed EtOH/DMF solvent at pH ca. 2. For complex 1, the octahedral coordination geometry of the MnII center is provided by two oxygen atoms from two dianionic BDC-F4 ligands, two DMF ligands and two aqua ligands, giving a 1-D linear chain array. For complex 2, the NiII center is coordinated by two dianionic BDC-F4 ligands, two EtOH ligands and two DMF ligands, resulting in a 1-D chain structure. For complex 3, the CdII center is coordinated by four dianionic BDC-F4 ligands, one EtOH ligand and one DMF ligand, generating a 2-D layered structure. The results suggest that both the metal and the solution pH play an important role in the formation of the complexes. The spectroscopic, thermal, and luminescence properties of the complexes have been investigated.  相似文献   

13.
Two metal coordination polymers, [Cd(ipa)(L1)(H2O)]n (1) and [Cd(ipa)(L2)]n (2) [H2ipa?=?isophthalic acid, L1?=?3,5-bis(imidazole-1-yl)pyridine and L2?=?3,5-bis(benzoimidazo-1-ly)pyridine], have been synthesized and structurally characterized by IR, elemental analysis, XRD, and X-ray single-crystal diffraction. Complex 1 shows a twofold cds topological net and 2 features a 3-D pcu topological net. Luminescent properties of 1 and 2 were investigated in the solid state at room temperature.  相似文献   

14.
A new metal-valence tuning synthetic approach has been utilized to generate two new mixed-valence Cu(I,II) coordination polymers Cu(2)(im)(3) and Cu(3)(im)(4)(Him = imidazole), which are an unprecedented uninodal 4-connected 4.8(5) topological net and a 4-connected (4,4) net, respectively.  相似文献   

15.
To investigate the effect of different imidazole-containing ligands on the structure of coordination polymers, two new Zn(II) coordination polymers based on 1,4-cyclohexanedicarboxylic acid (H2cda) and two different imidazole-containing ligands, [Zn(cda)(bib)0.5]n (1) and [Zn(cda)(bmib)0.5]n (2) (bib = 1,4-bis(imidazol-1-yl)benzene and bmib = 1,4-bis(2-methylimidazol-3-ium-yl)benzene), have been synthesized and characterized by single-crystal X-ray diffraction. Complex 1 shows a 3-D structure with point symbol (4.82.103).(4.82). Complex 2 displays a 2-D layer structure with an –AB– stacking sequence.  相似文献   

16.
Three complexes, namely Zn(BDC-Cl4)(py)3 (1), Cu(BDC-Cl4)(py)3 (2) and Cd(BDC-Cl4)(py)3 (3) (BDC-Cl4 = 2,3,5,6-tetrachloro-1,4-benzenedicarboxylate, py = pyridine) have been synthesized. Complexes (1) and (2) have been obtained using solvothermal methods. Both have a five-coordinate geometry with two bridging monodentate tetrachloroterephthalate ligands and three pyridine ligands coordinated to the Zn(II) or Cu(II) atom. The tetrachloroterephthalate ligands bridge the adjacent Zn(II) or Cu(II) centers, giving zigzag chains. Complex (3) has also been crystallized, each Cd(II) atom is six-coordinated to three carboxylate oxygen atoms and three pyridyl nitrogen atoms. Two types of tetrachloroterephthalate ligand, featuring monodentate and bidentate carboxylates, connect the Cd(II) centers to form zigzag chains. All three complexes have been subjected to thermogravimetric analysis.  相似文献   

17.
Reactions of Cd(NO3)2?·?4H2O with NH4SCN, ppz (ppz?=?piperazine) and bpa (bpa?=?bis(4-pyridyl)ethane) in CH3OH afforded the cavity-containing rectangular grids {Cd(SCN)2(ppz)} n (1) and {Cd(NCS)2(bpa)} n (2). The ppz ligand in 1 is coordinated to the metal through both nitrogen atoms to form the 1-D zig-zag chain structure and distorted {CdN4S2} octahedral coordination geometry at each Cd center is completed by pairs of bidentate thiocyanato ligands. Complex 2 has the 2-D arrangement constructed through 1-D double μ(N,S) end-to-end bridging thiocyanato groups bridging Cd(II) chains interconnected through disordered bpa ligands.  相似文献   

18.
By utilizing nicotinic acid as a co-ligand, two new azido-bridged cobalt(II) complexes with the formulae [Co(2)(N(3))(nic)(2)Cl(H(2)O)](n) (1) and [Co(N(3))(nic)](n) (2) (nic = nicotinate) have been synthesized under solvothermal condition and structurally characterized. Complex 1 exhibits a rare three-dimensional (3D) Kagomé topology with [Co4] units as connecting nodes. Complex 2 is also a 3D structure which contains 1D Co(II)-μ-1,1-azido chains as rod-shaped SBUs. Magnetic data analysis shows that ferromagnetic coupling intra-[Co4]-cluster and antiferromagnetic interaction inter-[Co4]-cluster exists in complex 1, while complex 2 exhibits metamagnetism with a critical field of 5.5 kOe.  相似文献   

19.
Five structually distinct coordination polymers [Cd(bte)3](NO3)2 n (1), [Cd(bte)2(H2O)2](NO3)2 n (2), [Cd(bte)(NO2)2] n (3), [Cd(bte)2(H2O)2](H2O)2(ClO4)2 n (4) and [Cd(bte)(NCS)2]n (5) (bte = 1,2-bis(1,2,4-triazol-1-yl)ethane) have been synthesized and characterized. The structures of 1, 2, 3, 4 and 5 consist of a double interpenetrating three-dimensional -poloniumn cubic network, a two-dimensional (4,4) network, a two-dimensional rhombic network, a one-dimensional double chain containing 18-membered [Cd2(bte)2] rings and a two-dimensional rhombic network containing eight-membered [Cd2(SCN)2] rings, respectively.  相似文献   

20.
Dai JC  Wu XT  Fu ZY  Cui CP  Hu SM  Du WX  Wu LM  Zhang HH  Sun RQ 《Inorganic chemistry》2002,41(6):1391-1396
Three novel complexes, Cd3tma2*13H2O (1), Cd3tma2*dabco*2H2O (2), and Cd3Htma3*8H2O (3) (tma = trimesate), of cadmium(II)-trimesate coordination polymers are obtained from hydrothermal reaction. 1 (C18H32O25Cd3) crystallizes in the monoclinic C2/c space group [a = 18.985(2) A, b = 7.3872(6) A, c = 20.432(2) A, = 97.1660(10), and Z = 4]. 2 (C24H22N2O14Cd3) crystallizes in the monoclinic P2(1)/c space group [a = 10.1323(2) A, b = 19.5669(5) A, c = 13.15880(10) A, = 108.9810(10), and Z = 4]. 3 (C27H28O26Cd3) belongs to the trigonal P31c space group [a = 15.7547(3) A, b = 15.7547(3) A, c = 7.93160(10) A, and Z = 2]. The Cd(II) centers in the three complexes are bridged by tma ligands in the coordination fashion of unidentate, bridging unidentate, bidentate, chelating bis-bidentate, chelating/bridging bis-bidentate, or chelating/bridging bidentate to form the T-shaped molecular bilayer motif for 1, chicken-wire-like motif for 2, and honeycomb-like porous structure for 3, respectively, in which the T-shaped molecular bilayer motif and chicken-wire-like motif are further interlinked in interdigitating or alternating fashion to construct the different coordination architectures. These three complexes exhibit strong fluorescent emission bands at 355 nm (lambda(ex) = 220 nm) for 1, 437 nm (lambda(ex) = 365 nm) for 2, and 353 nm (lambda(ex) = 218 nm) for 3 in the solid state at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号