首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knowledge of the kinetics of gas bubble formation and evolution under cavitation conditions in molten alloys is important for the control casting defects such as porosity and dissolved hydrogen. Using in situ synchrotron X-ray radiography, we studied the dynamic behaviour of ultrasonic cavitation gas bubbles in a molten Al–10 wt% Cu alloy. The size distribution, average radius and growth rate of cavitation gas bubbles were quantified under an acoustic intensity of 800 W/cm2 and a maximum acoustic pressure of 4.5 MPa (45 atm). Bubbles exhibited a log-normal size distribution with an average radius of 15.3 ± 0.5 μm. Under applied sonication conditions the growth rate of bubble radius, R(t), followed a power law with a form of R(t) = αtβ, and α = 0.0021 & β = 0.89. The observed tendencies were discussed in relation to bubble growth mechanisms of Al alloy melts.  相似文献   

2.
The inertial cavitation activity depends on the sonication parameters. The purpose of this work is development of dual frequency inertial cavitation meter for therapeutic applications of ultrasound waves. In this study, the chemical effects of sonication parameters in dual frequency sonication (40 kHz and 1 MHz) were investigated in the progressive wave mode using iodide dosimetry. For this purpose, efficacy of different exposure parameters such as intensity, sonication duration, sonication mode, duty factor and net ultrasound energy on the inertial cavitation activity have been studied. To quantify cavitational effects, the KI dosimeter solution was sonicated and its absorbance at a wavelength of 350 nm was measured. The absorbance values in continuous sonication mode was significantly higher than the absorbance corresponding to the pulsed mode having duty factors of 20–80% (p < 0.05). Among different combination modes (1 MHz100% + 40 kHz100%, 1 MHz100% + 40 kHz80%, 1 MHz80% + 40 kHz100%, 1 MHz80% + 40 kHz80%), the continuous mode for dual frequency sonication is more effective than other combinations (p < 0.05). The absorbance for this combined dual frequency mode was about 1.8 times higher than that obtained from the algebraic summation of single frequency sonications. It is believed that the optimization of dual frequency sonication parameters at low-level intensity (<3 W/cm2) by optically assisted cavitation event sensor can be useful for ultrasonic treatments.  相似文献   

3.
Single-domain nanoscale magnetic iron particles have been embedded uniformly in an amorphous matrix of alumina using a pulsed laser deposition technique. Structural characterization by transmission electron microscopy (TEM) reveals the presence of a crystalline iron and an amorphous alumina phase. Fine particle magnetism have been investigated by carrying out field and temperature dependence of magnetization measurements using superconducting quantum interference device magnetometer. The particle size of Fe in Al2O3 matrices prepared by changing the deposition time of Fe, have been found to be 9, 7 and 5 nm from TEM studies. At 10 K, the coercivities of these samples are found be 450, 350 and 150 Oe, respectively. At 300 K, the coercivity of Fe–Al2O3 sample decreases from 100 to 50 Oe as the particle size decreases from 9 to 7 nm and finally the sample turns superparamagnetic when the Fe particle size becomes around 5 nm. Based on the calculated value of blocking temperature, TB, (481 K), magnetic anisotropy K (4.8×105 erg/cm3) for Fe, and the Boltzmann constant kB (1.38×10−16 erg/K) from TB=KV/25kB, the mean radius of Fe particles is found to be 9.3 nm. in one of the samples. This is in good agreement with the particle size measured using TEM studies.  相似文献   

4.
《Solid State Ionics》2006,177(26-32):2585-2588
Electronically conducting glasses of the composition xV2O5·(100  x)P2O5 for 60 < x < 90 were prepared. The glasses of the composition corresponding to x = 90 exhibited the highest electrical conductivity and they were studied in more detail. The effects of the annealing of the samples on their electrical conductivity, structure and other characteristics were studied by impedance spectroscopy, X-ray diffractometry, DSC and SEM microscopy. It was shown that, at temperatures close to the crystallization temperature Tc (determined from DSC), these glasses turned into nanomaterials consisting of crystalline grains of V2O5 (average size 25–35 nm) embedded in the glassy matrix. Their electrical conductivity was higher and the temperature stability was better than those of the starting glasses. It is postulated that the major role in this conductivity enhancement is played by the interfacial regions between crystalline and amorphous phases. The annealing at temperatures exceeding Tc led to massive crystallization and to a conductivity drop. The XRD and SEM observations have shown that the material under study undergoes structural changes: from amorphous at the beginning, to partly crystalline after the annealing at 340 °C and to polycrystalline after the annealing at 530 °C.The obtained results are in agreement with those of our earlier studies on mixed electronic–ionic conducting glasses of the ternary Li2O–V2O5–P2O5 system.  相似文献   

5.
《Solid State Ionics》2006,177(7-8):727-732
Three different formulations of 14 Li2O·9 Al2O3·38 TiO2·39 P2O5 composition (LATP) were melted, cast and crystallized. As-cast glass was characterized by differential scanning calorimetry which exhibited a distinct and strong exothermic peak around 680 °C. The peak was attributed to the crystallization of the glass. The crystallized glass (glass-ceramic) was further characterized by X-ray diffraction which showed the existence of Li1 + xAlxTi2  x(PO4)3 (x  0.3)as the primary phase mixed with a small concentration of AlPO4 and an unidentified phase. The scanning electron micrographs revealed the presence of the primary crystalline phase with an average grain size of 1 μm. Electrical characterization by AC impedance spectroscopy revealed grain and grain boundary contributions to the total conductivity. The effect of specimen processing parameters on conductivity is also investigated and discussed.  相似文献   

6.
Nanostructured Mn3O4 sample with an average crystallite size of ∼15 nm is synthesized via the reduction of potassium permanganate using hydrazine. The average particle size obtained from the Transmission Electron Microscopy analysis is in good agreement with the average crystallite size estimated from X-ray diffraction analysis. The presence of Mn4+ ions at the octahedral sites is inferred from the results of Raman, UV–visible absorption and X-ray photoelectron spectroscopy analyzes. DC electrical conductivity of the sample in the temperature range 313–423 K, is about five orders of magnitude larger than that reported for single crystalline Mn3O4 sample. The dominant conduction mechanism is identified to be of the polaronic hopping of holes between cations in the octahedral sites. The zero field cooled and field cooled magnetization of the sample is studied in the range 20–300 K. The Curie temperature for the sample is about 45 K, below which the sample is ferrimagnetic. A blocking temperature of 35 K is observed in the field cooled curve. It is observed that the sample shows hysteresis at temperatures below the Curie temperature with no saturation, even at an applied field (20 kOe). The presence of an ordered core and disordered surface of spin arrangements is observed from the magnetization studies. Above the Curie temperature, the sample shows linear dependence of magnetization on applied field with no hysteresis characteristic of paramagnetic phase.  相似文献   

7.
A batch production for fabrication of LREBa2Cu3Oy (LRE: Sm, Gd, NEG) “LRE-123” pellets are developed in air and Ar-1% O2 using a novel thin film Nd-123 seeds grown on MgO crystals. The SEM and XRD results conformed that the quality and orientation of the seed crystals are excellent. On the other hand, new seeds can withstand temperatures >1100 °C, as a result, the cold seeding process was applied even to grow Sm-123 material in Air. The trapped field observed in the best 45 mm single-grain puck of Gd-123 was in the range of 1.35 T and 0.35 T at 77.3 K and 87.3 K, respectively. The average trapped field at 77.3 K in the 24 mm diameter NEG-123 samples batch lies between 0.9 and 1 T. The maximum trapped field of 1.2 T was recorded at the sample surface. Further, the maximum trapped field of 0.23 T at 77 K was recorded in a sample with 16 mm diameter of Sm-123 with 3 mol% BaO2 addition. As a result we made more then 130 single grain pucks within a couple of months. Taking advantage of the single grain batch processed material, we constructed self-made chilled levitation disk, which was used on the open day of railway technical research Institute. More then 150 children stood on the levitation disk and revel the experience of levitation. The present results prove that a high-performance good-quality class of LREBa2Cu3Oy material can be made by using a novel thin film Nd-123 seeds.  相似文献   

8.
The tetragonal ThMn12-type, single crystalline DyFe10CoTi sample has been investigated by torque and magnetization measurements and observation of domain structure at various temperatures between 10–300 K and in magnetic field from B=0 to 0.15 T. These examinations showed that the magnetic structure of DyFe10CoTi changes from “easy axis” (c-axis) type to conical at 225 K and to “easy plane” (ab plane) type at 100 K.  相似文献   

9.
In the present paper, the effects of nitridation on the quality of GaN epitaxial films grown on Si(1 1 1) substrates by metal–organic chemical vapor phase deposition (MOCVD) are discussed. A series of GaN layers were grown on Si(1 1 1) under various conditions and characterized by Nomarski microscopy (NM), atomic force microscopy (AFM), high resolution X-ray diffraction (HRXRD), and room temperature (RT) photoluminescence (PL) measurements. Firstly, we optimized LT-AlN/HT-AlN/Si(1 1 1) templates and graded AlGaN intermediate layers thicknesses. In order to prevent stress relaxation, step-graded AlGaN layers were introduced along with a crack-free GaN layer of thickness exceeding 2.2 μm. Secondly, the effect of in situ substrate nitridation and the insertion of an SixNy intermediate layer on the GaN crystalline quality was investigated. Our measurements show that the nitridation position greatly influences the surface morphology and PL and XRD spectra of GaN grown atop the SixNy layer. The X-ray diffraction and PL measurements results confirmed that the single-crystalline wurtzite GaN was successfully grown in samples A (without SixNy layer) and B (with SixNy layer on Si(1 1 1)). The resulting GaN film surfaces were flat, mirror-like, and crack-free. The full-width-at-half maximum (FWHM) of the X-ray rocking curve for (0 0 0 2) diffraction from the GaN epilayer of the sample B in ω-scan was 492 arcsec. The PL spectrum at room temperature showed that the GaN epilayer had a light emission at a wavelength of 365 nm with a FWHM of 6.6 nm (33.2 meV). In sample B, the insertion of a SixNy intermediate layer significantly improved the optical and structural properties. In sample C (with SixNy layer on Al0.11Ga0.89N interlayer). The in situ depositing of the, however, we did not obtain any improvements in the optical or structural properties.  相似文献   

10.
Currently several therapeutic applications of ultrasound in cancer treatment are under progress which uses cavitation phenomena to deliver their effects. There are several methods to evaluate cavitation activity such as chemical dosimetry and measurement of subharmonic signals. In this study, the cavitation activity induced by the ultrasound irradiation on exposure parameters has been measured by terephthalic acid chemical dosimetry and subharmonic analysis. Experiments were performed in the near 1 MHz fields in the progressive wave mode and effect of duty cycles changes with 2 W/cm2 intensity (ISATA) and acoustic intensity changes in continuous mode on both fluorescence intensity and subharmonic intensity were measured. The dependence between fluorescence intensity of terephthalic acid chemical dosimetry and subharmonic intensity analysis were analyzed by Pearson correlation (p-value < 0.05). It has been shown that the subharmonic intensity and the fluorescence intensity for continuous mode is higher than for pulsing mode (p-value < 0.05). Also results show that there is a significant difference between the subharmonic intensity and the fluorescence intensity with sonication intensity (p-value < 0.05). A significant correlation between the fluorescence intensity and subharmonic intensity at different duty cycles (R = 0.997, p-value < 0.05) and different intensities (R = 0.985, p-value < 0.05) were shown. The subharmonic intensity (μW/cm2) significantly correlated with the fluorescence intensity (count) (R = 0.901; p < 0.05) and the fluorescence intensity due to chemical dosimetry could be estimated with subharmonic intensity due to subharmonic spectrum analysis. It is concluded that there is dependence between terephthalic acid chemical dosimetry and subharmonic spectrum analysis to examine the acoustic cavitation activity.  相似文献   

11.
《Solid State Ionics》2006,177(9-10):863-868
Layered Li(Ni0.5Co0.5)1−yFeyO2 cathodes with 0  y  0.2 have been synthesized by firing the coprecipitated hydroxides of the transition metals and lithium hydroxide at 700 °C and characterized as cathode materials for lithium ion batteries to various cutoff charge voltages (up to 4.5 V). While the y = 0.05 sample shows an improvement in capacity, cyclability, and rate capability, those with y = 0.1 and 0.2 exhibit a decline in electrochemical performance compared to the y = 0 sample. Structural characterization of the chemically delithiated Li1−x(Ni0.5Co0.5)1−yFeyO2 samples indicates that the initial O3 structure is maintained down to a lithium content (1  x)  0.3. For (1  x) < 0.3, while a P3 type phase is formed for the y = 0 sample, an O1 type phase is formed for the y = 0.05, 0.1 and 0.2 samples. Monitoring the average oxidation state of the transition metal ions with lithium contents (1  x) reveals that the system is chemically more stable down to a lower lithium content (1  x)  0.3 compared to the Li1−xCoO2 system. The improved structural and chemical stabilities appear to lead to better cyclability to higher cutoff charge voltages compared to that found before with the LiCoO2 system.  相似文献   

12.
Although BPSCCO superconducting regime has very low stability under high oxygen pressures as reported in the literature, we managed to synthesize relatively pure 2212-BPSCCO and their Nb-doped samples having general formula Bi1−xNbxPbSr2CaCu2O8, where x = 0.1, 0.2, 0.4 and 0.6 mole, respectively, at moderate oxygen pressure (∼30 bar). The superconducting measurements proved that the best recorded Tc  69 K was for the undoped 2212-BPSCCO, while the lowest Tc  58 K was recorded for the maximum doped sample x = 0.6 mole indicating that superconductive transition temperatures Tcs decrease regularly with increasing Nb-dopant concentration from x = 0.1 to 0.6, respectively. The lattice parameter c exhibited a slight length compression as Nb-dopant ratio increases from 0.1 to 0.6 mole, respectively. From SE-microscopic analysis, the average grain size was estimated and found in between 0.44 and 1.6 μm which is considered relatively high to that reported in the literature. The measured Jc’s values were found to be enhanced remarkably as Nb-dopant concentration increases.  相似文献   

13.
Acoustic cavitation energy distributions were investigated for various frequencies such as 35, 72, 110 and 170 kHz in a large-scale sonoreactor. The energy analyses were conducted in three-dimensions and the highest and most stable cavitation energy distribution was obtained not in 35 kHz but in 72 kHz. However, the half-cavitation-energy distance was larger in the case of 35 kHz ultrasound than in the case of 72 kHz, demonstrating that cavitation energy for one cycle was higher for a lower frequency. This discrepancy was due to the large surface area of the cavitation-energy-meter probe. In addition, 110 and 170 kHz ultrasound showed a very low and poor cavitation energy distribution. Therefore larger input power was required to optimize the use of higher frequency ultrasound in the sonoreactor with long-irradiation distance. The relationship between cavitation energy and sonochemical efficiency using potassium iodide (KI) dosimetry was best fitted quadratically. From 7.77 × 10?10 to 4.42 × 10?9 mol/J of sonochemical efficiency was evaluated for the cavitation energy from 31.76 to 103. 67 W. In addition, the cavitation energy attenuation was estimated under the assumption that cavitation energy measured in this study would be equivalent to sound intensity, resulting in 0.10, 0.18 and 2.44 m?1 of the attenuation coefficient (α) for 35, 72 and 110 kHz, respectively. Furthermore, α/(frequency)2 was not constant, as some previous studies have suggested.  相似文献   

14.
We investigated micron size, high-performance, and solenoid-type radio-frequency surface-mounted device (SMD) chip inductors with a low-loss Al2O3 core for a GHz drive microwave circuit application. Copper coils with a diameter of 27 μm were used and the chip inductors fabricated in this study are 0.86 × 0.46 × 0.45 mm3. The high-frequency characteristics of the inductance (L), quality factor (Q), and impedance (Z) of the developed inductors were measured using a RF impedance/material analyzer (HP4291B with HP16193A test fixture). The developed inductors have a self-resonant frequency of 3.7–5.2 GHz and exhibit L of 15–34 nH. The inductors have Q of 38–49 over the frequency ranges of 900 MHz–1.7 GHz. The calculated data obtained from the equivalent circuit and the derived equation of Q described the high-frequency data of L, Q, and Z of the inductors developed quite well.  相似文献   

15.
We studied the effect of TiO2 doping on flux pinning and superconducting properties of a melt-grown (Nd0.33Eu0.33Gd0.33) Ba2Cu3Oy + 35 mol% Gd2BaCuO5 (70 nm in size) composite (NEG-123) processed in Ar–1% O2 atmosphere. As indicated by similar, sharp superconducting transitions, the small quantities of TiO2 used in our experiments did not deteriorate superconducting properties of the NEG material. Transmission electron microscopy (TEM) analysis found 20–50 nm Ti-based particles in the NEG-123 matrix. However, we have not observed the clouds of <10 nm sized particles in the NEG-123 matrix, as in the case of recently reported NEG-123 composites doped by Mo and Nb nanoparticles. Nevertheless, quite a good JcB performance in the 0.1 mol% Ti-doped sample, namely 550 kA/cm2 at the self-field and at the secondary peak field (4.5 T) was achieved at 65 K, while 320 kA/cm2 was obtained at zero-field at 77 K, and 50 kA/cm2 at 90.2 K. The pinning effectiveness decreased with increasing Ti content above 0.2 mol%. The analysis of the pinning force showed that higher concentration of Ti (>0.2 mol%) increased the amount of normal pins (δl pinning), indicated by the Fp(h) peak shift from h = 0.42–0.36. The maximum pinning effect in a broad field range could be achieved by optimizing Ti content and adding sub-micron Gd-211 particles.  相似文献   

16.
NdFeB thin films of the form A (20 nm)/NdFeB(d nm)/A(20 nm), where d ranges from 54 to 540 nm and the buffer layer A is Nb or V were prepared on a Si(1 0 0) substrate by magnetron sputtering. The hard Nd2Fe14B phase is formed by a 30 s rapid anneal or a 20 min anneal. Average crystallite size ranged from 20 to 35 nm with the rapidly annealed samples having the smaller crystallite size. These samples also exhibited a larger coercivity and energy product than those treated by a 20 min vacuum anneal. A maximum coercivity of 26.3 kOe at room temperature was obtained for a Nb/NdFeB (180 nm)/Nb film after a rapid anneal at 725°C. Initial magnetization curves indicate magnetization rotation rather than nucleation of reverse domains is important in the magnetization process. A Brown's equation analysis of the coercivity as a function of temperature allowed us to compare the rapidly annealed and 20 min annealed samples. This analysis suggests that rapid annealing gives higher quality crystalline grains than the 20 min annealed sample leading to the observed large coercivity in the rapidly annealed samples.  相似文献   

17.
The solid phases of: (i) freshly prepared aluminosilicate gel, (ii) the same gel aged for 48 h at either room temperature or at 40 °C and (iii) products of hydrothermal treatments (at 80 °C for 240 min) of gels (i) and (ii) were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and positron annihilation lifetime spectroscopy (PALS). Additionally, crystal size distributions (CSD) of the crystalline end products obtained by hydrothermal treatment of (i) and (ii) were measured. By analysis of the o-Ps annihilation lifetimes τ3 and τ4, it was concluded that in all amorphous (gel) and crystalline (zeolite A) samples annihilation takes place in voids characteristic for the crystal structure of zeolite A. The number of such structural elements increases with ageing of the hydrogel, as evidenced by the increase of the o-Ps lifetime intensities I3 and I4 of the aged hydrogels. Based on the combined analysis of PALS (measuring of intensities I3 and I4, associated to lifetimes τ3 and τ4) and CSD (measuring of average crystal size and specific number of crystals) data, a correlation between the amount of (quasi)crystalline phase and the intensities I3 and I4 is assumed.  相似文献   

18.
Magnetic and magneto-optical properties of MnSb films with different crystalline orientations on various semiconductors of GaAs(1 0 0), GaAs(1 1 1)A, B, and sapphire(0 0 0 1) have been measured by a vibrating sample magnetometer (VSM) and a home-made magneto-optical Kerr effect (MOKE) system. All these samples have their easy axes in the plane and show ferromagnetic properties. Among these samples, the film on GaAs(1 1 1)B has the lowest coercive force Hc and the largest squareness (SQ) value, whereas the film on GaAs(1 0 0) shows the largest Hc and the lowest SQ value. A large Kerr rotation angle of about 0.3° was observed at a wavelength of λ=632.8 nm for the film on sapphire in the field applied both parallel and perpendicular to the film plane. However, the MnSn films on other substrates do not have an observable Kerr rotation. The dynamic effect of the hysteresis was also measured using our MOKE system. As the frequency of applied magnetic field increases, the loop rounds off at the corners and the loop area increases.  相似文献   

19.
The effect of the ball milling time (BMT) on the substitution of the carbon in the glucose doped MgB2 samples is investigated here. Using in situ solid state reaction, four different doped samples of Mg(B.98C.02)2 were prepared by mixing powders of Mg, boron and glucose for 2 h, 4 h, 8 h and 12 h using planetary ball milling. A reference sample of un-doped MgB2 was also prepared under same conditions. The particle size distribution of the un-reacted samples show a decrease in the particle size as the BMT is increased. Both the average particle size as well as the standard deviation show a substantial decrease with the increase in the milling time up to 8 h. After 8 h, the size reduction is rather insignificant. From the XRD data, the crystallite size of the doped MgB2 computed using the Scherrer formula was found to decrease with the increasing BMT, showing a saturation level after 8 h of the milling time. TEM images also confirm the crystallite size obtained from the XRD data. The substitution of the C in the MgB2 lattice, measured from the change in the c/a ratio, increases with increasing BMT. The maximum carbon substitution is achieved at approximately 8 h of BMT. Moreover, a systematic enhancement of the residual resistivity and a decrease in TC with an increasing BMT further confirms a progressive substitution of the carbon in the MgB2. These results suggest that a minimum ball milling time is necessary to disperse the glucose uniformly for a maximum substitution of nano C in the B plane of MgB2 lattice. The optimum BMT is found to be 8 h. Thus, the decrease in the particle size due to the ball milling enhances the dispersion of the constituent materials thereby favoring a greater substitution of the dopant in the MgB2 during the solid-state reaction.  相似文献   

20.
A WF6–H2–N2 precursor system was used for plasma-enhanced chemical vapor deposition (PECVD) of WNx films. We examined the microstructural changes of the WNx films depending on N2/H2 flow-rate ratio and post-annealing (600–800 °C for 1 h). As the N2/H2 flow rate was increased from 0 to 1.5, as-deposited WNx films exhibited various different crystalline states, such as nanocrystalline and/or amorphous structure comprising W, WN, and W2N phases, a fine W2N granular structure embedded in an amorphous matrix, and a crystalline structure of β-W2N phase. After post-annealing above 600 °C, crystalline recovery with phase separation to β-W2N and α-W was observed from the WNx films deposited at an optimized deposition condition (flow-rate ratio = 0.25). From this PECVD method, an excellent step coverage of ∼90% was obtained from the WNx films at a contact diameter of 0.4 μm and an aspect ratio of 3.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号