首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
曹超  王胜  唐科  尹伟  吴洋 《物理学报》2014,63(18):182801-182801
极化中子照相技术通过分析极化中子束的自旋相移对样品磁场进行成像,目前已发展出多种成像技术方案,其中能量选择法和自旋回波法极化中子成像技术从不同的原理出发,解决了极化中子照相中磁场量化的周期解问题,同时避免装置极化效率等参数的影响,可以实现较高的量化精度.本文对两种极化中子照相技术方案进行研究,通过对单色器能量分辨率和装置极化效率等关键参数的分析和模拟,确定在研究堆上开展相关实验的可行性,并初步明确其量化能力和适用范围.相关结果可为极化中子照相的实验数据处理技术研究及装置设计提供参考.  相似文献   

2.
We review progress made in the last quarter of a century in the field of neutron spectrometry over a wide energy range from ??1 MeV to a few tens of GeV. We consider spectrometers and detectors constructed in various laboratories for neutron measurements in numerous fundamental and applied studies. We discuss the results of works devoted to the development of experimental methods and the elaboration of new detectors. We pursue some promising avenues of further investigations.  相似文献   

3.
4.
In many domains of acoustic field propagation, such as medical ultrasound imaging, lithotripsy shock treatment, and underwater sonar, a realistic calculation of beam patterns requires treatment of the effects of diffraction from finite sources. Also, the mechanisms of loss and nonlinear effects within the medium are typically nonnegligible. The combination of diffraction, attenuation, and nonlinear effects has been treated by a number of formulations and numerical techniques. A novel model that incrementally propagates the field of baffled planar sources with substeps that account for the physics of diffraction, attenuation, and nonlinearity is presented. The model accounts for the effect of refraction and reflection (but not multiple reflections) in the case of propagation through multiple, parallel layers of fluid medium. An implementation of the model for axis symmetric sources has been developed. In one substep of the implementation, a new discrete Hankel transform is used with spatial transform techniques to propagate the field over a short distance with diffraction and attenuation. In the other substep, the temporal frequency domain solution to Burgers' equation is implemented to account for the nonlinear accretion and depletion of harmonics. This approach yields a computationally efficient procedure for calculating beam patterns from a baffled planar, axially symmetric source under conditions ranging from quasilinear through shock. The model is not restricted by the usual parabolic wave approximation and the field's directionality is explicitly accounted for at each point. Useage of a harmonic-limiting scheme allows the model to propagate some previously intractable high-intensity nonlinear fields. Results of the model are shown to be in excellent agreement with measurements performed on the nonlinear field of an unfocused 2.25-MHz piston source, even in the near field where the established parabolic wave approximation model fails. Next, the model is used to compare the water path and in situ fields of a medical ultrasound device. Finally, the model is used to calculate the spatial heating rate associated with a nonlinear field and to simulate the phenomenon of saturation-induced beam broadening.  相似文献   

5.
In this paper we study three different functional approaches to classical thermal field theory, which turn out to be the classical counterparts of three well-known different formulations of quantum thermal field theory: the closed-time path (CTP) formalism, the thermofield dynamics (TFD) and the Matsubara approach.  相似文献   

6.
《Nuclear Physics B》1998,525(3):627-640
We present the thermodynamic Bethe ansatz as a way to factorize the partition function of a 2d field theory, in particular, a conformal field theory and we compare it with another approach to factorization due to Schoutens which consists of diagonalizing matrix recursion relations between the partition functions at consecutive levels. We prove that both are equivalent, taking as examples the SU(2) spinons and the 3-state Potts model. In the latter case we see that there are two different thermodynamic Bethe ansatz equation systems with the same physical content, of which the second is new and corresponds to a one-quasiparticle representation, as opposed to the usual two-quasiparticle representation. This new thermodynamic Bethe ansatz system leads to a new dilogarithmic formula for the central charge of that model.  相似文献   

7.
YuP Popov 《Pramana》2001,57(2-3):601-610
Neutron spectrometry provides many branches of science and technology with the necessary data. Usually the main part of the data is supplied by powerful neutron time-of-flight spectrometers. Nevertheless there are many other very effective but simpler and cheaper neutron spectroscopy methods on accelerators, suitable for solution of plenty of scientific and applied problems (for example, in astrophysics and radioactive waste transmutation). The methods of slowing-down spectrometry in lead and graphite, generating of neutron spectra, characteristic for nucleosynthesis in the stars, and neutron spectrometry by means of primary γ-transition shift are discussed in the report.  相似文献   

8.
Extensive data have been gathered since the early 1990s on the response of different detectors based on the registration of neutron-induced fission in bismuth, gold, tantalum by the spark replica counter and the thin film breakdown counter. These detectors make it possible to exploit the excellent characteristics of the fission reactions in bismuth, gold and tantalum for the measurements of high-energy neutrons.

Most of the investigations have been carried out at the quasi-monoenergetic neutron beam facility at The Svedberg Laboratory-TSL of the Uppsala University in cooperation with the Khlopin Radium Institute (KRI).

The responses of different fission detectors in the intermediate range of neutron energy (35–180 MeV) have been evaluated: a region where the predictive power of available nuclear reaction models and codes is not reliable yet. For neutron energy greater than 200 MeV, the fission-detector responses have been derived from the data of the proton fission cross-sections.

Finally, by using the ratio of the responses of these detectors, a simple and accurate way to evaluate the spectrum hardness can be obtained, thus providing a tool to obtain spectral information needed for neutron dosimetry without the need to know the entire spectrum.

The experimentally measured spectra obtained to-date have different shapes and they are also different from those calculated.

In this paper, a new approach will be reported to analyse the existing spectra by using response ratios of different detectors. Preliminary data have been already obtained for the high-energy neutron spectrum from the CERN concrete facility.  相似文献   


9.
The internal and external solutions describing the gravitational field of a neutron star consisting of an ideal fluid with axially polarized spin are found within the framework of the metric-affine theory of gravitation under the approximation of weak gravitational and torsion fields.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 53–57, January, 1982.  相似文献   

10.
An innovative accelerator-based neutron source for boron neutron capture therapy has started operation at the Budker Institute of Nuclear Physics, Novosibirsk. This facility is based on a compact vacuum insulation tandem accelerator designed to produce proton current up to 10 mA. Epithermal neutrons are proposed to be generated by 1.915 MeV protons bombarding a lithium target using 7Li(p,n)7Be threshold reaction.In the article, techniques to detect neutron and gamma-rays at the facility are described. Gamma radiation is measured with NaI and BGO gamma-spectrometers. The total yield of neutrons is determined by measuring the 477 keV γ-quanta from beryllium decay. For the rough analysis of the generated neutron spectrum we used bubble detectors. As the epithermal neutrons are of interest for neutron capture therapy the NaI detector is used as activation detector. We plan to use a time-of-flight technique for neutron spectra measurement. To realize this technique a new solution of short time neutron generation is proposed.  相似文献   

11.
The European Commission has funded within its 6th Framework Programme a three-year project (2005–2007) called CONRAD, COordinated Network for RAdiation Dosimetry. A major task of the CONRAD Work Package “complex mixed radiation fields at workplaces” was to organise a benchmark exercise in a workplace field at a high-energy particle accelerator where neutrons are the dominant radiation component. The CONRAD benchmark exercise took place at the Gesellschaft für Schwerionenforschung mbH (GSI) in Darmstadt, Germany in July 2006. In this paper, the results of the spectrometry using four extended -range Bonner sphere spectrometers of four different institutes are reported. Outside Cave A the neutron spectra were measured with three spectrometers at six selected positions and ambient dose equivalent values were derived for use in the intercomparison with other area monitors and dosemeters. At a common position all three spectrometers were used to allow a direct comparison of their results which acts as an internal quality assurance. The comparison of the neutron spectra measured by the different groups shows very good agreement. A detailed analysis presents some differences between the shapes of the spectra and possible sources of these differences are discussed. However, the ability of Bonner sphere spectrometers to provide reliable integral quantities like fluence and ambient dose equivalent is well demonstrated in this exercise. The fluence and dose results derived by the three groups agree very well within the given uncertainties, not only with respect to the total energy region present in this environment but also for selected energy regions which contribute in certain strength to the total values. In addition to the positions outside Cave A one spectrometer was used to measure the neutron spectrum at one position in the entry maze of Cave A. In this case a comparison was possible to earlier measurements.  相似文献   

12.
We present a review of inelastic neutron scattering results on very diluted rare earth (RE)-Laves phases. A systematic investigation to study crystal electric fields, experienced by single rare earth ions in a metallic environment, was done on (RE,R)Al2, with RE=Pr, Nd, Tb, Dy, Ho, Er, Tm andR=Sc, Y, La. We show the influence of the 4f-ions on the crystal fields as well as the influence of the host lattices. The rare earth atoms in ScAl2 have been studied for the first time and most of the other alloys, with LaAl2 and YAl2 as hosts, have been studied for the first time with magnetic atom concentrations below 1 at% and/or with good resolution for low energy excitations. Furthermore we studied the dynamics of 4f-moments, which are coupled to the conduction electrons by determining the coupling constants. We present a comprehensive set of crystal field parameters and coupling constants from these systematic studies and discuss them qualitatively within the available theoretical models. The influence of magnetic atom concentration on crystal field spectra will be shown in part II.  相似文献   

13.
The range of neutron energies encountered at workplaces extends from 10?2 eV to 107 eV or even higher neutron energies. The monoenergetic neutron calibration fields cover the neutron energy range from 104 eV to 107 eV. Hence calibrations in so-called realistic fields with a broad spectral distribution similar to those at workplaces are still essential for radiation protection equipment.This is the reason why PTB has developed a simulated workplace field. The field is produced using a proton beam on a thick Li or Be target installed in a moderating sphere which produces the intermediate and thermal part of the spectrum. Different target materials and compositions and different constructions of the target were investigated with special focus on the long-term stability of the neutron yield, as well as the stability of the spectral neutron fluence of the primary neutron spectrum. The spectral distribution outside the moderator sphere was measured using the PTB Bonner sphere spectrometer NEMUS and calculated using MCNPX.  相似文献   

14.
In the presence of a strong magnetic field and under conditions as realized in the crust and the superfluid core of neutron stars, the Hall drift dominates the field evolution. We show by a linear analysis that, for a sufficiently strong large-scale background field depending at least quadratically on position in a plane conducting slab, an instability occurs which rapidly generates small-scale fields. Their growth rates depend on the choice of the boundary conditions, increase with the background field strength, and may reach 10(3) times the Ohmic decay rate. The effect of that instability on the rotational and thermal evolution of neutron stars is discussed.  相似文献   

15.
A compact neutron spectrometer based on the liquid scintillator is presented for neutron energy spectrum measurements at the HL-2A Tokamak. The spectrometer was well characterized and a fast digital pulse shape discrimination software was developed using the charge comparison method. A digitizer data acquisition system with a maximum frequency of 1 MHz can work under an environment with a high count rate at HL-2A Tokamak. Specific radiation and magnetic shielding for the spectrometer were designed for the neutron spectrum measurement at the HL-2A Tokamak. For pulse height spectrum analysis, dedicated numerical simulation utilizing NUBEAM combined with GENESIS was performed to obtain the neutron energy spectrum. Subsequently, the transportation process from the plasma to the detector was evaluated with Monte Carlo calculations. The distorted neutron energy spectrum was folded with the response matrix of the liquid scintillation spectrometer, and good consistency was found between the simulated and measured pulse height spectra. This neutron spectrometer based on a digital acquisition system could be well adopted for the investigation of the auxiliary heating behavior and the fast-ion related phenomenon on different tokamak devices.  相似文献   

16.
Based on the Dirac equation describing an electron moving in a uniform and cylindrically symmetric magnetic field which may be the result of the self-consistent mean field of the electrons themselves in a neutron star, we have obtained the eigen solutions and the orbital magnetic moments of electrons in which each eigen orbital can be calculated. From the eigen energy spectrum we find that the lowest energy level is the highly degenerate orbitals with the quantum numbers pz = 0, n = 0, and m ≥0. At the ground state, the electrons fill the lowest eigen states to form many Landau magnetic cells and each cell is a circular disk with the radius λfree and the thickness λe, where λfree is the electron mean free path determined by Coulomb cross section and electron density and λe is the electron Compton wavelength. The magnetic moment of each cell and the number of cells in the neutron star are calculated, from which the total magnetic moment and magnetic field of the neutron star can be calculated. The results are compared with the observational data and the agreement is reasonable.  相似文献   

17.
We argue that polarisation analysis of scattering of an unpolarised beam from a single crystal is a useful technique for looking at crystal field excitations. A general expression for the polarisation in the scattered beam is presented and two illustrative examples worked out.  相似文献   

18.
19.
Carbon ions have significant advantages in tumor therapy because of their physical and biological properties. In view of the radiation protection, the safety of patients is the most important issue in therapy processes.Therefore, the effects of the secondary particles produced by the carbon ions in the tumor therapy should be carefully considered, especially for the neutrons. In the present work, the neutron radiation field induced by carbon ions was evaluated by using the FLUKA code. The simulated results of neutron energy spectra and neutron dose was found to be in good agreement with the experiment data. In addition, energy deposition of carbon ions and neutrons in tissue-like media was studied, it is found that the secondary neutron energy deposition is not expected to exceed 1% of the carbon ion energy deposition in a typical treatment.  相似文献   

20.
Based on the Dirac equation describing an electron moving in a uniform and cylindrically symmetric magnetic field which may be the result of the self-consistent mean field of the electrons themselves in a neutron star, we have obtained the eigen solutions and the orbital magnetic moments of electrons in which each eigen orbital can be calculated. From the eigen energy spectrum we find that the lowest energy level is the highly degenerate orbitals with the quantum numbers pZ=0, n=0, and m≥0. At the ground state, the electrons fill the lowest eigen states to form many Landau magnetic cells and each cell is a circular disk with the radius λfree and the thickness λe, where λfree is the electron mean free path determined by Coulomb cross section and electron density and λe is the electron Compton wavelength. The magnetic moment of each cell and the number of cells in the neutron star are calculated, from which the total magnetic moment and magnetic field of the neutron star can be calculated. The results are compared with the observational data and the agreement is reasonable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号