首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Investigation of the quantum dot infrared photodetectors dark current   总被引:1,自引:0,他引:1  
Quantum dot infrared photodetectors (QDIPs) are more efficient than other types of semiconductor based photodetectors; so it has become an actively developed field of research. In this paper quantum dot infrared photodetector dark current is evaluated theoretically. This evaluation is based on the model that was developed by Ryzhii et al. Here it is assumed that both thermionic emission and field-assisted tunneling mechanisms determine the dark current of QDIPs; moreover we have considered Richardson effect, which has not been taken into account in previous research. Then a new formula for estimating average number of electrons in a quantum dot infrared photodetector is derived. Considering the Richardson effect and field-assisted tunneling mechanisms in the dark current improves the accuracy of algorithm and causes the theoretical data to fit better in the experiment. The QDIPs dark current temperature and biasing voltage dependency, contribution of thermionic emission and field-assisted tunneling at various temperatures and biasing voltage in the QDIPs dark current are investigated. Moreover, the other parameter effects like quantum dot (QD) density and QD size effect on the QDIPs dark current are investigated.  相似文献   

4.
5.
Dark current has attracted much attention in recent years due to its great influence on the performance of the QDIP. In this paper, a model for the dark current is proposed with the consideration of the influence of the nanoscale electron transport on the dark current based on the dark current model proposed by H.C. Liu. The model permits calculating the dark current as a function of the electric field, and it can further estimate the photocurrent, the current responsivity and the detectivity via the current equilibrium equation under the dark condition. The results obtained show a good agreement with the experimental results and manifest the validity of the proposed model.  相似文献   

6.
基于载流子在量子结构中的输运理论研究了甚长波量子阱红外探测器(峰值响应波长15μm,量子阱个数大于40)的载流子的输运性质.研究结果表明,在甚长波量子阱红外探测器中,电流密度一般很低,暗电流主要来源于能量高于势垒边的热激发电子.通过薛定谔方程和泊松方程以及电流的连续性方程的自洽求解,发现外加偏压下电子浓度在甚长波器件各量子阱的分布发生较大变化,电场在整个器件结构上呈非均匀分布,靠近发射极层的势垒承担的电压远远高于均匀分布的情形.平带模型假定电压在器件体系上均匀分布,导致小偏压下的理论计算值远远低于实验值. 关键词: 甚长波量子阱红外探测器 量子波输运 暗电流  相似文献   

7.
The spectral dependence of the photoconductivity of silicon with multiply charged manganese nanoclusters is studied at different background currents. The spectral ranges where the IR quenching of the photoconductivity takes place and a shift in the photon energy at which the quenching efficiency as a function of the background current reaches a maximum are determined. The results allow us to design low-level IR photodetectors intended for the interval hν = 0.4–0.8 eV in the presence of fairly high background currents.  相似文献   

8.
刘红梅  杨春花  刘鑫  张建奇  石云龙 《物理学报》2013,62(21):218501-218501
为了表征噪声对量子点红外探测器性能的影响, 本文推导了噪声的理论模型. 该模型通过考虑纳米尺度电子传输和微米尺度电子传输对激发能的共同影响, 并结合噪声增益, 实现了对噪声的估算. 得到的结果与实验的数据相比, 显示了很好的一致性, 从而验证了这个模型的正确性. 关键词: 电子传输 暗电流 增益 噪声  相似文献   

9.
Quantum dot infrared photodetectors (QDIPs) have already attracted more and more attention in recent years due to a high photoconductive gain, a low dark current and an increased operating temperature. In the paper, a device model for the QDIP is proposed. It is assumed that the total electron transport and the self-consistent potential distribution under the dark conditions determine the dark current calculation of QDIP devices in this model. The model can be used for calculating the dark current, the photocurrent and the detectivity of QDIP devices, and these calculated results show a good agreement with the published results, which illustrate the validity of the device model.  相似文献   

10.
This paper presents a theoretical analysis for the dark current characteristics of different quantum infrared photodetectors. These quantum photodetectors are quantum dot infrared photodetectors (QDIP), quantum wire infrared photodetectors (QRIP), and quantum well infrared photodetectors (QWIP). Mathematical models describing these devices are introduced. The developed models accounts for the self-consistent potential distribution. These models are taking the effect of donor charges on the spatial distribution of the electric potential in the active region. The developed model is used to investigate the behavior of dark current with different values of performance parameters such as applied voltage, number of quantum wire (QR) layers, QD layers, lateral characteristic size, doping quantum wire density and temperature. It explains strong sensitivity of dark current to the density of QDs/QRs and the doping level of the active region. In order to confirm our models and their validity on the practical applications, a comparison between the results obtained by proposed models and that experimentally published are conducted and full agreement is observed. Several performance parameters are tuned to enhance the performance of these quantum photodetectors through the presented modeling. The resultant performance characteristics and comparison among them are presented in this work. From the obtained results we notice that the total dark current in the QRIPs can be significantly lower than that in the QWIPs. Moreover, main features of the QRIPs such as the large gap between the induced photocurrent and dark current open the way for overcoming the problems of quantum dot infrared photodetectors.  相似文献   

11.
Non-Gaussian dark current noise has been observed in quantum wells infrared photo detectors. The non-Gaussian component of the noise was ascribed to fluctuations of spatial distribution of electric field in the device. Non-Gaussian noise was found in both n- and p-type QWIPs, however, it was significantly less pronounce. In n-type devices non-Gaussian noise manifests itself only as randomly distributed excess current bursts. In p-type QWIPs the non-Gaussian noise takes form of bias dependent random telegraph-like fluctuations with a finite time of transition between the levels. The lifetime at both levels is Poisson distributed and the average lifetime, together with the level spacing, strongly depend on bias voltage. At low voltages the system stays predominantly in the low current level while at higher voltages the average lifetime of the high current level is longer. The transient time of passing between the states has been related to the charging time constant of the system determined by QWIP capacitance and contacts resistance.  相似文献   

12.
This work focuses on the quantum mechanical evaluation of two components of the dark current in quantum well infrared photodetectors (QWIPs)––field induced emission (FIE) and thermionic emission (TE). The negligible value of the third component of the dark current––sequential tunnelling (ST)––was shown theoretically in previously published work. Calculations are on devices that cover the long wavelength- to very long wavelength-infrared (LWIR to VLWIR) region of the spectrum. The results prove theoretically for the first time various experimentally observed characteristics of these two emission components of the dark current.  相似文献   

13.
14.
This paper presents a review of recent advances in quantum well and quantum cascade infrared photodetectors developed in Shanghai Institute of Technical Physics, Chinese Academy of Sciences(SITP/CAS). Firstly, the temperature-and bias-dependent photocurrent spectra of very long wavelength(VLW) GaAs/AlGaAs quantum well infrared photodetectors(QWIPs) are studied using spectroscopic measurements and corresponding theoretical calculations in detail. We confirm that the first excited state, which belongs to the quasi-bound state, can be converted into a quasi-continuum state induced by bias and temperature. Aided by band structure calculations, we propose a model of the double excited states that determine the working mechanism in VLW QWIPs. Secondly, we present an overview of a VLW QWIP focal plane array(FPA)with 320×256 pixels based on the bound to quasi-bound(BTQB) design. The technology of the manufacturing FPA based on the QWIP structures has been demonstrated. At the operating temperature of 45 K, the detectivity of QWIP FPA is larger than 1.4×10~(10) cm·Hz~(1/2)/W with a cutoff wavelength larger than 16 μm. Finally, to meet the needs of space applications, we proposed a new long wavelength quantum cascade detector with a broadband detection ranging from 7.6 μm to 10.4 μm. With a pair of identical coupled quantum wells separated by a thin barrier, acting as absorption regions, the relative linewidth(?E/E) of response can be dramatically broadened to 30.7%. It is shown that the spectral shape and linewidth can be tuned by the thickness of the thin barrier, while it is insensitive to the working temperature. The device can work above liquid nitrogen temperature with a peak responsivity of 63 mA/W and Johnson noise limited detectivity of 5.1×10~9 cm·Hz~(1/2)/W.  相似文献   

15.
Quantum dots infrared photodetectors (QDIPs) theoretically have several advantages compared with quantum wells infrared photodetectors (QWIPs). In this paper, we discuss the theoretical advantages of QDIPs including the normal incidence response, lower dark current, higher responsivity and detectivity, etc. Recent device fabrication and experiment results in this field are also presented. Based on the analysis of existing problems, some approaches that would improve the capability of the device are pointed out.  相似文献   

16.
A quantum mechanical approach is taken to investigate the contribution of sequential tunnelling as a component of the dark current in quantum well infrared photodetectors (QWIPs). Calculations are performed on three different experimentally reported QWIP devices made for different detection wavelengths. The results show that the sequential tunnelling component remains rather constant with different devices, however it is swamped by the thermionic emission components of the dark current at longer wavelengths. The lack of a local maximum in the dark current due to resonant LO phonon emission, which should be observed at short wavelengths, suggests that interface roughness and alloy disorder could be destroying the coherence of the electron wavefunctions between quantum wells.  相似文献   

17.
Temperature dependent behavior of the responsivity of InAs/GaAs quantum dot infrared photodetectors was investigated with detailed measurement of the current gain. The current gain varied about two orders of magnitude with 100 K temperature change. Meanwhile, the change in quantum efficiency is within a factor of 10. The dramatic change of the current gain is explained by the repulsive coulomb potential of the extra carriers in the QDs. With the measured current gain, the extra carrier number in QDs was calculated. More than one electron per QD could be captured as the dark current increases at 150 K. The extra electrons in the QDs elevated the Fermi level and changed the quantum efficiency of the QDIPs. The temperature dependence of the responsivity was qualitatively explained with the extra electrons.  相似文献   

18.
19.
Two-photon quantum well infrared photodetectors (QWIPs) involving three equidistant subbands take advantage of a resonantly enhanced optical nonlinearity, which is six orders of magnitude stronger than in a bulk semiconductor. This approach results in a sensitive device to measure quadratic autocorrelation of mid-infrared optical pulses from modelocked quantum cascade lasers, nonlinear optical conversion, and free-electron lasers (FEL). We report on autocorrelation measurements at wavelengths in the mid-infrared and Terahertz regimes using ps optical pulses from the FEL at the Forschungszentrum Dresden Rossendorf. In particular, quadratic detection at wavelengths around 5.5 μm is still possible at room-temperature, which is crucial for applications in practical systems. We also report on a two-photon detector which works below the Reststrahlen band at 42 μm (7.1 THz).  相似文献   

20.
Ion implantation is a postgrowth processing technique which, when combined with annealing, can be used to tune the absorption wavelength of quantum well devices. We have implanted and annealed, three different quantum well infrared photodetector structures, and measured the absorption spectra of the samples by Fourier transform spectroscopy. The peak absorption wavelength shift of each structure has been calculated as a function of diffusion length by simulating the diffusion processes. We found different diffusion rates for the structures and attribute this to different numbers of as-grown defects. Our results indicate that agglomeration of single defects into defect clusters limits the ability of ion implantation to tune the wavelength of a structure with a higher number of as-grown defects. Thus, a structure with the lowest number of as-grown defects is most useful for fabricating a multi-color quantum well photodetector by ion implantation, because in this case ion implantation can enhance the diffusion rate considerably leading to large red- shift in peak absorption wavelength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号