首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have measured continuous-wave (cw) photoinduced absorption (PA) spectra of PbS quantum dot (QD) films with four different sizes over a spectral range of 0.25-0.5 eV at T=10 K. The PA spectrum shows a strong asymmetric IR absorption peak (IR-PA). Both the peak position and shape of this IR-PA indicate distinct confinement dependence. Combining with results of interband transitions and Stokes shift, we assign this IR-PA to a transition from a well-defined below-gap state to the second excitonic level (1P). By measuring the frequency dependence of this IR-PA, we estimate the lifetime of this below-gap state to be around several microseconds. Possible interpretations of the origin of this below-gap state are given. This transition could potentially be used to monitor photogenerated charge transfer in such QD systems.  相似文献   

2.
We have studied clustering of colloidal particles under the influence of an ac electric field as a function of frequency. The field was applied in a direction perpendicular to the confining walls. Two regimes are observed, a low frequency regime where the clusters are isotropic with a local triangular order, as reported earlier in the literature, and a new high-frequency regime where the clusters are highly elongated (anisotropic) with no local order. The crossover from one regime to the other occurs at a critical frequency, f(c). The threshold field for the cluster formation, E(th), increases with frequency in both the regimes. An increase in the particle size leads to a reduction in both E(th) and f(c). We present evidence to show that the elongated structures seen at high frequency are related to the field inhomogeneities at imperfections on the conducting surface. We also propose a possible mechanism based on hydrodynamic flow considerations to explain the formation of these clusters.  相似文献   

3.
By comparing the adiabatic limit of the exact solutions of the time-dependent Schrödinger equation for spin in rotating magnetic field and for harmonic oscillator with time-dependent frequency with the solutions obtained using the quantum adiabatic theorem we have demonstrated the complete agreement of the two sets of solutions and the importance of phase fixing condition for this agreement. We argue that the notions like “familiar dynamical phase” of the “usual quantum adiabatic theorem” and “an additional phase” of “geometrical origin” have been based on the unjustified neglection of the mentioned condition by applying the quantum adiabatic theorem. There is nothing to add to the quantum adiabatic theorem in which time-dependent eigenbasis satisfies phase fixing condition.  相似文献   

4.
We study crystallization of paramagnetic beads in a magnetic field gradient generated by one-dimensional nanomagnets. The pressure in such a system depends on both the magnetic forces and the hydrodynamic flow, and we estimate the flow threshold for disassembling the crystal near the magnetic potential barrier. A number of different defects have been observed which fluctuate in shape or propagate along the crystal, and it is found that the defect density increases away from the nanomagnet. We also study the melting of the crystal/fluid system after removal of the nanomagnet and demonstrate that the bond-oriental order parameter decreases with time. The nanomagnet can be moved in a controlled manner by a weak external magnetic field, and at sufficiently large driving velocities we observe self-healing crack formation characterized by a roughening of the lattice as well as gap formation. Finally, when confined between two oscillating nanomagnets, the colloidal crystal is shown to break up and form dipolar chains above a certain oscillation frequency.  相似文献   

5.
Exact solutions to the quantum mechanical problem of an anisotropic oscillator in a one-dimensional magnetic field are obtained. These solutions (eigenenergies and wave functions) are then applied to the problem of calculating the magneto-optical properties of a charged spinless particle constrained to move in a harmonic potential field. General expressions for the dipole strengths and rotational strengths associated with radiation induced transitions between the eigenstates of this model system are developed, and these quantities are further related to observables of magneto-optical absorption spectroscopy and Faraday effect studies.  相似文献   

6.
This is the first study to consider a quantum dot with screw dislocation that has Rosen-Morse (RM) confinement potential, generated by a GaAs/GaAlAs heterostructure. An external magnetic field and Aharonov-Bohm (AB) flux field were also applied on RM quantum dot (RMQD) in order to stave the effects of a screw dislocation defect. The combined effect of the screw dislocation defect, the external magnetic field, and AB flux field on the total refractive index changes (TRICs) and the total absorption coefficients (TACs) of RMQD are thus investigated. Cylindrical coordinates are used due to the direction of application of the torsion and the external fields, as well as due to the structure's symmetry. The effective mass approximation and tridiagonal matrix methods are used in order to obtain the subband energy spectra and electronic wave functions of RMQD. The nonlinear optical specifications of RMQD are checked using compact-density-matrix formalism within the framework of the iterative method. Reviews without screw dislocation are also carried out in order to be able to clarify the effects of a screw dislocation defect on the optical properties, and then, both cases are deliberated. This study is the first attempt to analyze the AB flux field for RMQD without screw dislocation. In the present study, the influences of a screw dislocation defect on RMQD's TRICs and TACs are probed by considering different values of the external magnetic field and AB flux field, and the ranges of corresponding parameters on the optimum of the structure are specified. Moreover, the study also elucidates how to rule out the effects of screw dislocation on optical specifications by means of the external fields. Despite a certain screw dislocation, the frequency range is determined where the structure behaves as if it is perfect (namely, without screw dislocation) for its optimum, which in turn is crucial for experimental applications.  相似文献   

7.
We study one-photon excitation of atomic Rydberg- and continuum states close to a photoionization threshold in the presence of a weak static external magnetic field. A semiclassical closed orbit representation for the atomic transition amplitudes is derived, which exhibits the connection between quantum mechanics and the classical dynamics of the excited electron whose motion under the combined influence of the Coulomb field of the ionic core and the magnetic field is chaotic.  相似文献   

8.
Syntheses of CdTe/CdSe type-II quantum dots (QDs) using CdO and CdCl2 as precursors for core and shell, respectively, are reported. Characterization was made via near-IR interband emission, transmission electron microscopy (TEM), energy dispersive spectroscopy (EDX), and X-ray diffraction (XRD). Femtosecond fluorescence upconversion measurements on the relaxation dynamics of the CdTe core (in CdTe/CdSe) emission and CdTe/CdSe interband emission reveal that as the size of the core increases from 5.3, 6.1 to 6.9 nm, the rate of photoinduced electron separation decreases from 1.96, 1.44 to 1.07 x10(12) s(-1). The finite rates of the initial charge separation are tentatively rationalized by the small electron-phonon coupling, causing weak coupling between the initial and charge-separated states.  相似文献   

9.
A tungstated zirconia (WZ) catalyst with iron promoter used for the conversion of n-pentane into isopentane has been characterized by M?ssbauer spectroscopy. The M?ssbauer spectra have been recorded in zero magnetic field in the temperature range 0.05-295 K and with a magnetic field up to 7 T between 4.2 and 50 K. Both the recording of M?ssbauer spectra with an applied magnetic field and at extremely low temperature allowed for the demonstration that iron is present in the catalysts as (i) hematite (alpha-Fe2O3) particles a few 10 nm in size, (ii) very small oligomeric Fe(III) species, probably in solid solution in zirconia, and (iii) Fe(III) oxide clusters showing magnetic ordering, probably embedded in the first surface layer and thus forming "rafts". These latter clusters form two ensembles with quite different sizes: one with diameters of about 3 nm, the other with diameters larger than 30 nm. These results are in agreement with those recently obtained by X-ray absorption spectroscopy and electron paramagnetic resonance.  相似文献   

10.
Optical response in silver/polyvinylidene fluoride nanocomposite materials with nonspherical inclusions was examined using direct dipolar interband transitions, from density functional theory. We discuss here the dependence of the optical response of the material on the geometry, crystallographic makeup and end-cap morphology of the metallic inclusions, as well as on their orientation relative to the polarization direction of the applied electromagnetic field. Each periodic unit cell contained a single inclusion and a polymer matrix; thus, the composite behaved as a monodisperse, perfectly oriented material. Overall, the spectral location of the composite excitation spectrum was tied to that of the metallic inclusions and correlated well to quantum confinement models for the direction of polarization: As linear size of the inclusion increased in a given direction, the excitation spectrum of light polarized in that direction was red-shifted. The effect of the polymer matrix was also examined. Coulomb repulsion from matrix energy states led to splitting of nanoparticle-based energy levels, and the matrix conduction band became involved in high-energy transitions. These effects led to extensions of the spectra of nanocomposites with less stable {100}–basal plane inclusions to very low excitation energies. Attenuation or redshifting of nanoparticle peaks with high photon energies was also observed for materials with small linear sizes along the excitation direction. Comparisons with experimental and time-dependent density functional theory results suggest that estimating the complex dielectric constant from interband transition dipole moments, in a time-independent fashion, provides reliable qualitative spectra for these systems.  相似文献   

11.
We consider the effect of applied magnetic fields on the diffusion of single dextran molecules labeled with fluorescein isothiocyanate within a ferrogel [a composite of magnetite nanoparticles in a poly(methacrylic acid) hydrogel] using fluorescence correlation spectroscopy. We show that the mesh size of the ferrogel is controlled by the applied magnetic field, B, and scales as exp(-(4)√ξ(3)B(2)/2μ(0)k(B)T), where ξ is a correlation length, μ(0) the magnetic constant, k(B) the Boltzmann constant, and T is the absolute temperature. The diffusion coefficient of the dextran can be modeled with a simple Stokes-Einstein law, containing the same scaling behavior with magnetic field as the swelling of the hydrogel. Furthermore, the magnetic field-dependent release of dextran from the hydrogel is also controlled by the same relationship. The samples were characterized by small angle x-ray scattering (SAXS) and magnetometry experiments. Magnetic hysteresis loops from these ferrogels and zero field cooled∕field cooled measurements reveal single domain ferromagnetic behavior at room temperature with a similar coercivity for both as-prepared and fully swollen ferrogels, and for increasing magnetic nanoparticle concentration. SAXS experiments, such as the hysteresis loops, show that magnetite does not aggregate in these gels.  相似文献   

12.
We theoretically investigated the photothermally and optomechanically induced transparency (PTIT and OMIT) in an optomechanical system filled with quantum dots (QDs). In our proposed system, the right mechanical resonator couples with the optical cavity via radiation pressure, and the left mechanical resonator couples with the optical cavity through the photothermal effects. The system is driven by a strong pump field and a weak probe field. It is shown that double transparency windows can be observed due to PTIT and OMIT. When considering the Jaynes-Cummings coupling between the QDs and the optical cavity, three transparency windows are observed. We also show that the PTIT can be adjusted by the OMIT and the QDs in the optical cavity. What is more, the coupling strength and the frequency detuning can be used effectively to change the system absorption and dispersion in the PITT transparency window. This indicates that the group delay of the probe light can also be manipulated by the system parameters. The obtained results may be applied in the optical communication such as optical buffer, and so forth.  相似文献   

13.
Computational procedures, based on (i) the Ramsey common origin approach and (ii) the continuous transformation of the origin of the quantum mechanical current density-diamagnetic zero (CTOCD-DZ), were applied at the Hartree-Fock level to determine electric quadrupole polarizabilities of nuclear magnetic shielding for molecules in the presence of a nonuniform electric field with a uniform gradient. The quadrupole polarizabilities depend on the origin of the coordinate system, but values of the magnetic field induced at a reference nucleus, determined via the CTOCD-DZ approach, are origin independent for any calculations relying on the algebraic approximation, irrespective of size and quality of the (gaugeless) basis set employed. On the other hand, theoretical estimates of the induced magnetic field obtained by single-origin methods are translationally invariant only in the limit of complete basis sets. Calculations of electric quadrupole polarizabilities of nuclear magnetic shielding are reported for H(2), HF, H(2)O, NH(3), and CH(4) molecules.  相似文献   

14.
The interband and intraband spectra of colloidal II-VI CdS and CdSe quantum dot cores and CdSZnSe, CdSCdSe, CdSeCdS, and CdSeZnSe core/shell systems are reported. Infrared absorption peaks between 0.5 and 0.2 eV are observed. The slope of the intraband energy versus the first interband absorption feature is characteristic of the relative band alignments of the materials constituting the core and the shell and it is analyzed within an effective mass model. The analysis provides a new estimate of the band gap of zinc blende CdSe as well as the band offsets in zinc blende and wurtzite CdSe, CdS, and ZnSe.  相似文献   

15.
A theoretical analysis is presented of the signals observed with different systems that employ the Zeeman effect for background correction in analytical atomic absorption spectrometry.Magnetic modulation of the primary source of radiation offers basically the same possibilities as the deuterium background correction system. Correction for wavelength dependent background absorption is possible only when the magnetic field is applied to the absorbing vapour. Similar expressions are obtained for constant or variable magnetic fields directed either perpendicular or parallel to the optical axis. However, mere magnetic modulation of either the source or the atomizer cannot correct for non-absorbed lines.It is demonstrated that simultaneous correction for non-absorbed lines and background absorption can be attained with a variable magnetic field applied to the atomizer, by taking measurements at three discrete, different field strengths.  相似文献   

16.
In this research, we focus on the studying of absorbed energies of materials under an external magnetic field frequency of 0.5 GHz. This wave corresponds to microwave irradiation. The absorbent materials were arrayed disk‐like iron particles with dimension on the nanometer scale and magnetic responses of the particles were simulated by solving the Landau–Lifshitz–Gilbert equation. The external fields were applied from various directions and energies of absorption of the system were calculated. The maximum absorbed energies were found when the field was 135° ± 30° along the X‐axis or the Y‐axis. The current simulation demonstrated that the direction of applied field results in different absorption energies of the system.  相似文献   

17.
We investigated the quantum beats, the oscillation between singlet and triplet states of radical pairs induced by the microwave field resonant to one of the component radicals. They were observed as the alternation of the yields of the component radicals by a nanosecond time-resolved optical absorption with the X-band (9.15 GHz) resonant microwave pulse. This technique was applied to the photochemical reaction of benzophenone, benzophenone-d(10), and benzophenone-carbonyl-(13)C in a sodium dodecylsulfate micellar solution with a step-by-step increase of the resonant microwave pulse width. The yields of the component radicals showed alternation with an increase of the microwave pulse width. This indicates that the radical pair retains spin coherence in the micellar solution. The magnetic isotope effect on the amplitude of the quantum beat was observed. The MW effect on the quantum beat of BP-(13)C decreases from 80% to 60% of that of BP by irradiation of the pi-pulse MW due to spin-locking. The kinetic parameters were also determined using the X- or Ku-band (17.44 GHz) region. They are almost similar to each other except for the intersystem recombination rate in the system of BP-(13)C, which may be slightly higher than those in other systems.  相似文献   

18.
A new atomic-absorption spectrophotometer using the Zeeman effect, in which the magnetic field is applied to the light source, is described. A steady magnetic field of 3.8 kG was applied to conventional hollow-cathode lamps, which were operated using a high frequency power of 100 MHz.The π-and σ-components of the Zeeman split atomic lines were observed alternatively after traversing a flame. The absorbance difference between of the two Zeeman components was proportional to the atomic-absorption and was not influenced by background absorption. Dependences of atomic absorption signals on magnetic field strengths which were in close relation to profiles of absorption lines were measured for elements Cd, Mg, Pb, Cr, Cu and Mn by scanning of magnetic field strength.  相似文献   

19.
《Polyhedron》2005,24(16-17):2396-2399
Size dependence of the magnetic properties in nanoscale ferrimagnetic rings is investigated by the numerical diagonalization of the Heisenberg model. The field derivative of the magnetization is drastically dependent on size of the ring if the magnetic system has frustration, although the character does not exist in the non-frustrated system. Our numerical data support this tendency that the effect of frustration causes the size dependence of the magnetic properties in the nanoscale ferrimagnetic ring. We also demonstrate that the size dependence caused by frustration is also found in behavior of the translational quantum number of the ground state.  相似文献   

20.
Main mechanisms of absorption and dispersion of sound velocity in microinhomogeneous media are considered. Existing formulas for the velocity and absorption of sound in dispersion media is generalized to the case of continuos dispersed phase particle size distribution. The obtained relations were used for the analysis of the acoustic spectra of dodecane-based magnetic fluid measured in the 12–2000 MHz frequency range at temperatures varied from 0 to 80°C. The distribution of the volume fraction over particle sites in the examined magnetic fluid was described by a lognormal function. Parameters characterizing particle size distribution were determined. The analysis of the results of processing of the acoustic spectra of magnetic fluid indicated that the main contribution to the additional absorption (compared to absorption in the dispersion medium) originates from the friction and heat exchange between the particles and dispersion liquid. Absorption of sound due to scattering by the particles was negligibly small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号