首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Standard thermoluminescent (TL) detectors, owing to their relatively large thickness, may seriously underestimate personal skin doses which are defined at the depth of 7 mg cm−2. New TL ultra-thin, LiF:Mg,Cu,P-based detectors have been developed at the Institute of Nuclear Physics to fulfill simultaneously the requirements of flat energy response for beta rays and the ability to measure low beta ray doses. In our detectors a thin layer of MCP phosphor is bonded with a thick base of undoped LiF. We assess the effective thickness of this detector to be 8.5 mg cm−2. Tests of these detectors exposed with and without covering foil to 147Pm, 204Tl and 90Sr/90Y calibrated beta fields indicate that our detectors feature an essentially flat energy response and good angular characteristics. The sensitivity of our detectors permits doses in the microsievert range to be measured reliably.  相似文献   

3.
LiF:Mg,Cu,P detectors produced at the Institute of Nuclear Physics in Krakow have shown very good dosimetric characteristics. Understanding of the effect of the concentration and type of dopants is important in the characterization of TL materials. The aim of work was to investigate the influence of the type and concentration of the dopants on the photon energy response of these detectors by irradiations “in air” and on the ISO water phantom in the range of mean photon energies between 33 and 164 keV. The influence of dopants on the glow curves, sensitivity and reproducibility was also examined. Results showed that measured energy dependence values are lower compared to the theoretical values both “in air” and on phantom. The type and concentration of the dopants influence the shape of the glow curves and sensitivity while for energy dependence is more important the presence of certain activators, namely copper.  相似文献   

4.
We have studied the behavior of the glow peaks in the thermoluminescence of LiF:Mg,Cu,P as a function of pre-irradiation annealing temperature in the range 80 to 170°C, and as a function of cooling rate following the 240°C/10 min anneal used for standardization in dosimetric procedures. The intensities of the major peaks in LiF:Mg,Cu,P (as well as in LiF:Mg,Ti—the current industrial standard) seem to be determined by the dynamics of clustering of (Mg2+−Livac) dipoles to dimers, trimers and a precipitate phase. The intensities of the thermal interactions, however, seem to be somewhat reduced in LiF:Mg,Cu,P compared to LiF:Mg,Ti. In addition, it seems plausible that phosphorus takes the role of titanium in LiF:Mg,Cu,P in the formation of a trapping center/recombination center spatially correlated complex.  相似文献   

5.
Nanocrystalline LiF:Mg, Cu, P of rod shape (about 30-40 nm in diameter and 0.3-0.5 μm in length) has been prepared by the chemical co-precipitation method. Thermoluminescence (TL) and dosimetric characteristics of the nanocrystalline phosphor are studied and presented here. The formation of the material was confirmed by the X-ray diffraction (XRD). Its shape and size were also observed by transmission electron microscope (TEM). The TL glow curve of the nanocrystalline powder shows a single peak at 410 K along with four overlapping peaks of lesser intensities at around 570, 609, 638 and 663 K. The observed TL sensitivity of the prepared nanocrystalline powder is less than that of the commercially available “Harshaw TLD-700H hot-pressed chips” at low doses but it still around three times more than that of LiF:Mg, Ti (TLD-100) phosphor. The 410 K peak of the nanomaterial phosphor shows a very linear response with exposures increasing up to very high values (as high as 10 kGy), where all the other thermoluminesent dosimeters (TLD) phosphors show saturation. This linear response over a large span of exposures (0.1 Gy-10 kGy) along with negligible fading and its insensitivity to heating treatments makes the nanocrystalline phosphor useful for its application to estimate high exposures of γ-rays. The ‘tissue equivalence’ property of this material also makes it useful over a wide range of high-energy radiation.  相似文献   

6.
The behaviour of LiF:Mg,Cu,P and LiF:Mg,Ti detectors at ultra-high doses up to 1 MGy, has been investigated. The presence of the ultra-high-temperature peak (450 °C) of reproducible properties was observed in various batches of LiF:Mg,Cu,P, confirming earlier findings. The results indicate that this peak is not an effect of random impurities nor intrinsic effects of LiF, but it is rather connected with the doping.A parameter called ultra-high temperature ratio (UHTR) was defined in order to quantify the observed changes of LiF:Mg,Cu,P glow-curve shape at very high doses and very high temperatures. The use of this parameter allows to determine an absorbed dose in the range from 1 kGy to 1 MGy. This new method of high-dose dosimetry makes LiF:Mg,Cu,P a unique dosimeter, which is capable to cover at least 12 orders of magnitude of dose range: from a microgray to a megagray.  相似文献   

7.
We investigated the thermal degradation of LiF:Mg,Cu,P (NTL-250) and LiF:Mg,Cu,Si (MCS) for the development of TL sheet. By thermogravimetry and differential scanning calorimetry (TG-DSC), the exothermic reaction was observed between 320 °C and 400 °C in MCS as well as NTL-250. The heat value of MCS was twice as large as that of NTL-250. This ratio corresponded with that of Mg amount in these TL materials measured by ICP-OES (inductively-coupled plasma optical emission spectrometry). X-ray diffraction (XRD) measurements were also carried out, and the peaks of MgF2 phase were also observed in degraded MCS sample as well as NTL-250. Moreover, X-ray absorption near-edge structures (XANES) of Cu in these LiF TLDs were measured. The valences of Cu did not change before and after degradation. It indicates that the thermal degradation is caused by not Cu but Mg ion state change. The exothermic reaction is possible caused by the stabilization reactions, and then it was expected to correspond with MgF2 precipitation. From these results, we concluded that the thermal degradations of these LiF TLDs are caused by the precipitation of MgF2.  相似文献   

8.
9.
Newly developed LiF:Mg,Cu,Si was found to exhibit no significant fading on room temperature post-irradiation storage up to several months. In view of the wide variation in the reported data of fading of LiF:Mg,Cu,P exhibiting glow curve structure similar to that of LiF:Mg,Cu,Si, a study of the effect of post-irradiation storage and thermal treatments on the deconvoluted glow peaks of LiF:Mg,Cu,Si was undertaken. The decay of inseparable peak-3 by post-irradiation storage or thermal treatments did not indicate any rearrangement in the trap occupation that would affect the response of the main peak (peak-4). A post-irradiation treatment at 125 °C for 10 min was found to be the optimum to eliminate the lower temperature peaks.  相似文献   

10.
11.
Nanocrystalline LiF:Mg,Cu,P phosphor material of different shapes and sizes (microcrystalline cubic shape, nanorod shape and nanocrystalline cubical shaped) have been prepared by the chemical co-precipitation method. Thermoluminescence (TL) and other dosimetric characteristics of the phosphor are studied and presented here. The formation of the materials was confirmed by the X-ray diffraction (XRD). Its shapes and sizes were also observed using scanning electron microscope (SEM). The TL glow curve of the microcrystalline powder shows a prominent single peak at 408 K along with another peak of lesser intensity at around 638 K. On the contrary, the nanocrystalline rod shaped particles show a peak of low intensity at 401 K and a prominent peak around 700 K while the nanocrystalline particles in cubical shapes again show two peaks, one at around 407 K and the other at around 617 K, of which the lower temperature (407 K) peak is more prominent. The glow curve structure changes at very high doses (100 kRad) and some new peaks appear at around 525 and 637 K also the first peak appearing at around 401 K becomes prominent. The observed changes in TL due to the change in the shape and sizes of the nanophosphor have been reported. The PL has also been studied and various excitation and emission peaks observed due to the presence of various impurities are explained. The observed results have been explained in the light of asymmetrical crystal field effects due to asymmetrical shapes of the nanocrystalline phosphor. The comparison of these properties with the microcrystalline material prepared by the same co-precipitation method is also done.  相似文献   

12.
13.
Results from spectral studies of the optical and luminescent properties of single crystals of lithium fluoride grown using the Czochralski technique and doped with ions of copper and magnesium, are presented. The effect of heat treatment regimes and the dependence of the concentration of magnesium impurities on the sensitivity of crystals of LiF:Mg, Cu to ionizing radiation are discussed.  相似文献   

14.
The dose response of the TL emission spectra of an LiF:Mg,Ti (TLD-100) sample and three LiF:Mg,Ti samples with different impurity concentrations (0–6 ppm Ti and 80–100 ppm Mg) have been measured. At a dose less than 22 Gy the emission spectrum of the TLD-100 sample comprises one emission band at 420 nm. The sample without Ti shows also one emission band but now at 620 nm. The spectra of the other two samples comprises two emission bands at 420 nm and 620 nm of which the intensity of the 420 nm band increases with increasing Ti concentration. The dose response of the glow peaks is different for peaks at different temperatures and emission bands. From these observations it can be concluded than in LiF:Mg,Ti at least some of the traps and luminescent centers are coupled.  相似文献   

15.
In this paper we describe some aspects of our recent work which treats via kinetic simulations the experimentally observed linear/supralinear/saturating dose response of the thermoluminescence, optical absorption and behavior of optical bleaching at various photon energies in irradiated LiF:Mg,Ti (TLD-100) system in a physically realistic scenario. The results of the simulations are in good agreement with the experimental observations and this can be considered as a validation of the details of the proposed models.  相似文献   

16.
17.
Abstract

The paper is dedicated to investigation of possible ways of stabilization of the H centres created together with F and Mg+ centres in a process of decay of selftrapped exciton. As a main mode of the H centres stabilizationa capture of the H centre by magnesium-vacancy dipole and creation of V-type centre was suggested. This process was theoretically studied in the frames of model of molecular cluster which electron structure was calculated by the semi-empirical version of the Hartree-Fock method. For experimental corroboration of this process the relations between dependences of magnesium dipoles decrease on dose of gamma irradiation and corresponding dose dependences of the Mg+, Mg°, and F centres radiation creation were used.  相似文献   

18.
Erasure of the thermoluminescence (TL) signal on detector readout is considered to be a disadvantage of TL dosimetry, as post-readout dose reassessment is then impossible in principle. A method of dose reassessment based on phototransferred thermoluminescence (PTTL) has been developed at the Institute of Nuclear Physics, Polish Academy of Sciences (IFJ PAN) and applied to MTS-N (LiF:Mg,Ti) detectors. We demonstrate the possibility of applying PTTL for dose reassessment in MTS-N TL detectors routinely applied in the dosimetric service at IFJ PAN. Readings of TL detectors exposed to relatively high doses by the customers of our dosimetry service can now be reassessed using our automatic readers. A major obstacle in applying the PTTL method at lower exposures is the presence of residual dose accumulated in LiF:Mg,Ti detectors after many field exposure and readout cycles. Since most of the TL detectors in our service have been already used for a long time (e.g. for over 10 years in the case of some detector batches), we find that our PTTL method of dose reassessment is possible only in detectors which had received doses exceeding 5 mSv.  相似文献   

19.
The spectrum of the light emitted during thermoluminescence from irradiated LiF(Mg,Cu,P) has been measured for samples with different Cu and P contents. The results show no essential differences in glow curve structure and emission spectrum for MCP materials with different dopant contents and produced with different production techniques, except for samples with a low phosphorus concentration. The emission spectrum consits of two bands with maxima at 350 and 384 nm; the latter is dominant in the main glow peak and the former becomes more important at higher temperatures. Both bands are correlated with phosphorus, which appears to play a vital role in the overall sensitivity.  相似文献   

20.
The preparation method and some dosimetric properties of the new LiF:Mg,Cu,Si discs are presented. The effect of heat treatments on LiF:Mg,Cu,Si was investigated. The shape of the glow curve for LiF:Mg,Cu,Si is similar to that for standard LiF:Mg,Cu,P (GR-200A), and shows minimal differences when annealed in the range from 260 °C to 290 °C for 10 min. The TL sensitivity for LiF:Mg,Cu,Si is much lower than that for GR-200A, but is 35 times larger than that for TLD-100 and is slightly higher than that for HMCP. The height of the high-temperature peaks for LiF:Mg,Cu,Si is not only lower than that for GR-200A, but also lower than that for HMCP. The glow curve shape of LiF:Mg,Cu,Si annealed at 260 °C for different times shows minimal differences and TL response remains stable. These results indicate that the new LiF:Mg,Cu,Si disc has a good stability to thermal treatments and a lower residual TL signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号