首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method has been presented for calculation of effective atomic number (Zeff) of composite materials, by using back-scattering of 662?keV gamma photons obtained from a 137Cs mono-energetic radioactive source. The present technique is a non-destructive approach, and is employed to evaluate Zeff of different composite materials, by interacting gamma photons with semi-infinite material in a back-scattering geometry, using a 3?×?3 NaI(Tl) scintillation detector. The present work is undertaken to study the effect of target thickness on intensity distribution of gamma photons which are multiply back-scattered from targets (pure elements) and composites (mixtures of different elements). The intensity of multiply back-scattered events increases with increasing target thickness and finally saturates. The saturation thickness for multiply back-scattered events is used to assign a number (Zeff) for multi-element materials. Response function of the 3?×?3 NaI(Tl) scintillation detector is applied on observed pulse-height distribution to include the contribution of partially absorbed photons. The reduced value of signal-to-noise ratio interprets the increase in multiply back-scattered data of a response corrected spectrum. Data obtained from Monte Carlo simulations and literature also support the present experimental results.  相似文献   

2.
The backscattered peak and albedos are important for the estimation of exposure distribution and for better understanding the phenomenon of the backscattering of gamma photons. To characterize the backscattering probability of gamma photons interacting with different atomic numbers (Z), number (A N), energy (A E) and dose (A D) albedos are experimentally evaluated. The response function converts the observed pulse-height distribution of a NaI(Tl) scintillation detector to a true photon spectrum. For each of the incident gamma photon energies, the number and energy albedos show an increase with the increasing target thickness, and finally saturate. The energy albedos are found to be decreasing with the increase in the atomic number of the target material and incident gamma photon energy. The dose albedos do not differ significantly from the energy albedos for the chosen incident gamma photon energies.  相似文献   

3.
In this paper, we report a new method to determine the effective atomic number, Z eff, of composite materials for Compton effect in the γ-ray region 280–1115 keV based on the theoretically obtained Klein–Nishina scattering cross-sections in the angular range 50°–100° as well as a method to experimentally measure differential incoherent (Compton) scattering cross-sections in this angular range. The method was employed to evaluate Z eff for different inorganic compounds containing elements in the range Z = 1–56, at three scattering angles 60°, 80° and 100° at three incident gamma energies 279.1 keV, 661.6 keV and 1115.5 keV and we have verified this method to be an appropriate method. Interestingly, the Z eff values so obtained for the inorganic compounds were found to be equal to the total number of electrons present in the sample as given by the atomic number of the elements constituting the sample in accordance with the chemical formula of the sample. This was the case at all the three energies.  相似文献   

4.
The coherent (Rayleigh) to incoherent (Compton) scattering cross-section ratio of elements, in the range 6 ≤ Z ≤ 82, are determined experimentally for 145 keV incident gamma photons. An HPGe (High purity germanium) semiconductor detector is employed, at scattering angle of 50°, 70° and 90°, to record the spectra originating from interactions of incident gamma photons with the target under investigation. The intensity ratio of Rayleigh to Compton scattered peaks observed in the recorded spectra, and corrected for photo-peak efficiency of gamma detector and absorption of photons in the target and air, along with the other required parameters provides the differential cross-section ratio. The measured values of cross-section ratio are found to agree with theoretical predictions (corresponding to 4.939, 6.704 and 8.264 Å−1 photon momentum transfer) based upon non-relativistic form factor, relativistic form factor, modified form factor and S-matrix theory.  相似文献   

5.
A practical method of calculating Zeff was developed for the coherent to Compton scattering ratio and the method is applicable for any material with known weight percentages of different elements in the compound. The coherent to Compton scattering ratio depends only on the mixture under study and provides a measurement of certain complicated functions of the atomic number Z and Zeff. In order to measure the effective atomic number of Sb2O3, BaO, La2O3, CeO2 and Nd2O3, the linear differential scattering coefficients of 59.5 keV γ-rays have been studied using a high-resolution Si(Li) semi-conductor detector. The coherent to Compton scattering ratio R is taken from the linear differential scattering coefficients μ(E, q). The results obtained have been compared with relativistic (RT) and non-relativistic (NRT) theoretical values.  相似文献   

6.
ABSTRACT

Because of the high radiation dose in applications involving nuclear reactors, medical treatments etc., it is important to reduce the exposure to radiation of areas and workers. In this study, we were examined gamma ray shielding parameters of the newly produced Re-based superalloys. Mass attenuation coefficient (µ/ρ) of the alloys were obtained experimentally at 81, 276, 302, 356, 383 keV photon energies emitted from 133Ba radioactive source using Ultra Ge detector. The experimental results were compared with the values obtained by the WinXCOM program and were found to be in perfect agreement with each other. Additionally, effective atomic number (Zeff) and electron density (Neff) were determined for produced Rhenium (Re) based super alloys in the energy range 1 keV–100?GeV. S5 sample which has maximum Rhenium percentage own the largest µ/ρ and Zeff values. Moreover, by using Geometric Progression (GP) approximation, EABF and EBF were computed for the superalloys depending on the energy and penetration depths. It has been deduced that the values of EABF and EBF are minimum in the medium energy region. EBF and EABF values of the alloys have changed depending on the equivalent atomic number. Among alloy samples under study, S5 superalloy is the best for gamma ray shielding. However, in general, considering the radiation energies used in many applications, all the alloys under study have satisfactory radiation absorption properties.  相似文献   

7.
The present work emphasizes on the transmission of gamma photons, having energies in the range (241.8–401.8 keV) obtained by Compton scattering technique, to determine mass-attenuation coefficients (μm), molar-extinction coefficients (ε), mass-energy absorption coefficient (μen/ρ), effective atomic number (Zeff), mean free path (MFP), half value layer (HVL), total atomic (σt.a) and electronic (σt.el) cross-sections, and Hounsfield number (H) of various organic compounds like Alcohols, Aldehydes, Ketones, Esters, Amines, Benzene compounds and Water, and further used as radiation shielding. The WinXcom software package is used to compare the experimentally deduced radiation interaction parameters with theory. The theoretical and experimental results are in good agreement within permissible experimental uncertainty. The radiation shielding parameters have been found to vary with gamma-ray energy and effective atomic number for these organic compounds under present investigations.  相似文献   

8.
The matrix effect has a major impact on energy‐dispersive X‐ray fluorescence analysis (EDXRFA) and is difficult to be evaluated due to that the contents of some low‐atomic‐number elements cannot be identified by in‐situ EDXRFA. Up to today, the fundamental parameter algorithm proposed by Rousseau has been widely applied to correct the matrix effect. Accordingly, determining the matrix and mass attenuation coefficient (μ/ρ) of sample is a key issue for the fundamental parameter algorithm. In present work, the method to deduce μ/ρ by effective atomic number (Zeff) was studied. First, the relationship between Zeff and coherence to Compton scatting ratio (R) of the incident X‐ray was determined by standard samples. Then, we deduce Zeff and their μ/ρ. The value of μ/ρ deduced by our method is in good agreement with that calculated by WinXCOM, and the relative change (Δ) is less than 7%. We also deduced Zeff and their μ/ρ of Chinese national standard soil samples employing our method and good agreement with the calculated values were also obtained. We found that the agreement between experimental values of μ/ρ with theoretical values by WinXCOM still exists when the energy of the incident X‐ray is greater than 4 keV, and the Δ is less than 10%. The result indicates that our method may be applied directly to in‐situ EDXRFA.  相似文献   

9.
The high sensitivity Compton and Rayleigh X-ray scattering signals can be used to gain valuable information on the chemical composition of various matrices, by exploiting the ratio of those signals as a function of the effective atomic number (Zeff). Neither total reflection X-ray fluorescence (TXRF) nor the effect of the experimental setup, including sample preparation, X-ray excitation source selection, and band deconvolution procedure, has been assessed in this kind of approach. Here, a Compton/Rayleigh ratio and Zeff-based TXRF method was set up and tested as an analytical tool for milk samples differentiation. The method was developed using a 90° scattering angle and assessed using different X-ray excitation sources: a molybdenum tube (Mo Kα 17.5 KeV) and a tungsten tube (W Lα 8.5 KeV and W-Brems 35 KeV). The evaluation of independent Compton and Rayleigh signals was performed by non-Gaussian and Gaussian curve resolution methods, and both height and area-based calculations were evaluated. Different sample preparation conditions were assessed. By using 11 standard materials, a calibration curve for Compton/Rayleigh ratio versus Zeff was established. The method was tested to determine the Zeff of milk samples, which enabled its use as a parameter to differentiate them. Good precisions were obtained with the Mo excitation source and the area-based calculations, which allowed to differentiate undiluted milk samples by species, treatment, and fat content according to their Compton/Rayleigh ratio. This simple and rapid method has the potential to be used for the differentiation of various types of samples, including liquids, solids, and aerosols.  相似文献   

10.
The gamma ray photons continue to soften in energy as the number of scatterings increases in thick target, and results in the generation of singly and multiply scattered events. The number of these multiply scattered events increases with an increase in target thickness and saturates beyond a particular target thickness known as saturation depth. The present experiment is undertaken to study the saturation depth for 279 and 320 keV incident gamma ray photons multiply backscattered from copper targets of varying thickness. The backscattered photons are detected by a Nal(Tl) gamma detector whose pulse-height distribution is converted into a photon spectrum with the help of an inverse matrix approach. To extract the contribution of multiply backscattered photons only, the spectrum of singly scattered photon is reconstructed analytically. We observe that the numbers of multiply scattered events increases with an increase in target thickness and then saturate. The saturation depth is found to be decreasing with increase in incident gamma energy.  相似文献   

11.
Radiation interaction parameters such as total stopping power, projected range (longitudinal and lateral) straggling, mass attenuation coefficient, effective atomic number (Zeff) and electron density (Neff) of some shielding materials were investigated for photon and heavy charged particle interactions. The ranges, stragglings and mass attenuation coefficients were calculated for the high-density polyethylene(HDPE), borated polyethylene (BPE), brick (common silica), concrete (regular), wood, water, stainless steel (304), aluminum (alloy 6061-O), lead and bismuth using SRIM Monte Carlo software and WinXCom program. In addition, effective atomic numbers (Zeff) and electron densities (Neff) of HDPE, BPE, brick (common silica), concrete (regular), wood, water, stainless steel (304) and aluminum (alloy 6061-O) were calculated in the energy region 10?keV–100?MeV using mass stopping powers and mass attenuation coefficients. Two different methods namely direct and interpolation procedures were used to calculate Zeff for comparison and significant differences were determined between the methods. Variations of the ranges, longitudinal and lateral stragglings of water, concrete and stainless steel (304) were compared with each other in the continuous kinetic energy region and discussed with respect to their Zeffs. Moreover, energy absorption buildup factors (EABF) and exposure buildup factors (EBF) of the materials were determined for gamma rays as well and were compared with each other for different photon energies and different mfps in the photon energy region 0.015–15?MeV.  相似文献   

12.
The gamma-ray shielding behaviour of a material can be investigated by determining its various interaction and energy-absorption parameters (such as mass attenuation coefficients, mass energy absorption coefficients, and corresponding effective atomic numbers and electron densities). Literature review indicates that the effective atomic number (Zeff) has been used as extensive parameters for evaluating the effects and defect in the chosen materials caused by ionising radiations (X-rays and gamma-rays). A computer program (Zeff-toolkit) has been designed for obtaining the mean value of effective atomic number calculated by three different methods. A good agreement between the results obtained with Zeff-toolkit, Auto_Zeff software and experimentally measured values of Zeff has been observed. Although the Zeff-toolkit is capable of computing effective atomic numbers for both photon interaction (Zeff,PI) and energy absorption (Zeff,En) using three methods in each. No similar computer program is available in the literature which simultaneously computes these parameters simultaneously. The computed parameters have been compared and correlated in the wide energy range (0.001–20?MeV) for 10 commonly used building materials. The prominent variations in these parameters with gamma-ray photon energy have been observed due to the dominance of various absorption and scattering phenomena. The mean values of two effective atomic numbers (Zeff,PI and Zeff,En) are equivalent at energies below 0.002?MeV and above 0.3?MeV, indicating the dominance of gamma-ray absorption (photoelectric and pair production) over scattering (Compton) at these energies. Conversely in the energy range 0.002–0.3?MeV, the Compton scattering of gamma-rays dominates the absorption. From the 10 chosen samples of building materials, 2 soils showed better shielding behaviour than did other 8 materials.  相似文献   

13.
TL characteristics of powder form of Al2O3 doped with 0.1 mol% carbon and co-doped with different magnesium concentrations of 0.1 mol% and 0.2 mol% exposed to Cobalt-60 gamma ray at doses ranging from 5 Gy to 70 Gy were investigated. The recorded glow curves consist a dominant peak at 180 °C for a heating rate of 1 °C s−1. The TL sample with 0.2 mol% Mg concentration have higher response compared to the sample with 0.1 mol% Mg concentration for a delivered dose of 5 Gy. The TL response has linear relationship with delivered dose for both samples. The TL sensitivity was found as 277.9 nC mg−1 Gy−1 for the sample with Mg concentration 0.2 mol% and 128.2 nC mg−1 Gy−1 for 0.1 mol% Mg. However, the sample with 0.1 mol% Mg concentration has better fading properties compared to the sample with 0.2 mol% Mg concentration. Both samples show good reproducibility with value less than 13%. The experimental value of effective atomic number, Zeff is 9.21 and 9.44 for the sample with Mg concentration 0.1% mol and 0.2% mol, respectively, which are near to Zeff of bone with a value of about 11.6.  相似文献   

14.
Compton to Rayleigh scattering intensity ratios (IC/IR) have been measured using X-rays with energy 17.44 keV for single-component materials with atomic number Z from 4 (Be) to 31 (Ga) and binary compounds of stoichiometric composition. The measurements have been performed using two optical schemes: an energy-dispersive X-ray fluorescence scheme with a molybdenum secondary target and wavelength-dispersive X-ray fluorescence one. The processing of the spectra was carried out by fitting with Pearson VII functions. For single-component and binary standards, the experimental dependence of the scattering intensity ratio on the atomic number was found to be the same. This confirms the additivity of the contribution of different atoms to the scattering. The dependence has a complex shape but is well described by the theoretical relationship for IC/IR with correction on the difference between Compton and Rayleigh radiation absorption coefficients. Two ranges of atomic number values are defined, in which the effective atomic number Zeff can be determined by the calibration method using this dependence: for Z from 4 to 7 with low error of ΔZeff =±0.15 and for Zeff from 10 to 18 with low error of ΔZeff =±0.69. A change in the shape of the Compton peak and an overestimated value of the of the Compton and Rayleigh peak intensity ratio when passing from a single-component scatterer (Al or Si) to their oxides Al2O3 or SiO2, respectively, have been revealed.  相似文献   

15.
The probability of gamma or X-ray interactions with important 14 antioxidants have been discussed for total photon interactions in the wide energy range of 1?keV–100?GeV using the WinXCOM code. The variations of mass attenuation coefficient (μρ), effective atomic number (Zeff) and electron density (Nel) with photon energy were plotted for total photon interactions. It was found that the values of μρ, Zeff and Nel depend on the incoming photon energy and chemical compositions of antioxidant. The highest values of these parameters were found at a low-energy zone where the photoelectric effect is the dominant interaction process. When antioxidants were compared with each other, it was seen that Zeff has the highest values for Oenin chloride and Delphinidin chloride which contain the Cl element. This investigation is thought to be useful for medical applications where radiation exposure is present.  相似文献   

16.
ABSTRACT

Number, energy and dose albedos are measured at a scattering angle of 180° for a broad beam of 662 keV gamma rays obtained from a radioactive source of 137Cs (having strength in µCi; 1 Ci?=?3.7?×?1010 disintegrations per second). The gamma beam is incident on semi-infinite thick targets of variable atomic numbers. The scattering media is divided into three sets, which are pure elements, alloys and composite materials. Experiments are carried out using a 3?×?3 NaI(Tl) scintillation detector. To obtain precision in data, the response unfolding of a scintillation detector is used, which converts the observed pulse-height distribution to a true photon spectrum over the energy range of 2.5 to 640 keV. The detector response unfolding results in the true intensity of back-scattered gamma flux by shifting the events resulting from partial absorption of photons to the full energy peak of the spectrum. In the present study, albedo factors are studied as a function of target thickness and their atomic number. The experimentally calculated numbers of back-scattered gamma photon are in good agreement with theoretically generated numbers of multiple back-scattered counts by using a Monte Carlo simulation code. The experimental data on energy and intensity of 662 keV gamma photons are used to evaluate the number, energy and dose albedos for different materials under investigation.  相似文献   

17.
The K-L total vacancy transfer probabilities (ηKL) of selected elements in the atomic range 42≤Z≤82 have been determined using a weak gamma source. The targets are excited by 123.6 keV gamma photons from a weak 57Co source and K X-ray photons are measured by an ORTEC type GMX-10P HPGe detector coupled to 8 K multichannel analyzer. By measuring the K X-ray intensity ratio and K shell fluorescence yield, the K to L total vacancy transfer probabilities have been determined. Measured values have been compared with theoretical and other experimental values.  相似文献   

18.
The effective atomic numbers of some transition and rare earth compounds have been determined by measuring the ratio of Rayleigh to Compton scattering signal using 59.5?keV gamma radiation from americium-241 radioactive source. The scattered gamma photons from the elements and compounds at an angle of 90° were detected using an ORTEC high-purity germanium detector coupled with 16K multi-channel analyzer. By measuring the ratio of Rayleigh to Compton scattered signal (momentum transfer 3.38?Å?1), the effective atomic numbers of the transition and rare earth compounds have been determined and compared with theoretical values predicted by AutoZeff, power law, and direct method.  相似文献   

19.
The effective atomic number (Zeff) and effective electron density (Neff) of eight heavy metal oxide (HMO) glasses have been determined using the Monte Carlo simulation code MCNP for the energy range of 10?keV–10?MeV. The interpolation method was employed to extract Zeff and Neff values from the simulation and that calculated with the help of XCOM program. Comparisons are also made with predictions from the Auto-Zeff software in the same energy region. Wherever possible, the simulated values of Zeff and Neff are compared with experimental data. In general, a very good agreement was noticed. It was found that the Zeff and Neff vary with photon energy and do not have extended intermediate regions where Compton scattering is truly dominating; only dips slightly above ~1.5?MeV were recorded. Zeff and Neff are found to increase with PbO and Bi2O3 contents. It was found that the Zeff value rather than the Neff value is a better indicator for PbO and/or Bi2O3 contents.  相似文献   

20.
Pure magnesium ferrite sample was prepared by standard ceramic technique and characterized by X-ray diffraction method. XRD pattern revealed that the sample possess single-phase cubic spinel structure. The linear attenuation coefficient (μ), mass attenuation coefficient (μ/ρ), total atomic cross-section (σ tot), total electronic cross-section (σ ele) and the effective atomic number (Z eff) were calculated for pure magnesium ferrite (MgFe2O4). The values of γ-ray mass attenuation coefficient were obtained using a NaI energy selective scintillation counter with radioactive γ-ray sources having energy 0.36, 0.511, 0.662, 1.17 and 1.28 MeV. The experimentally obtained values of μ/ρ and Z eff agreed fairly well with those obtained theoretically.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号