首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The differential cross sections for neutron-proton charge-exchange scattering have been measured for incident neutron momenta between 8 and 29 GeV/c and for four-momentum transfers |t| between 0.002 and 1.0 (GeV/c)2. A neutron beam with a broad momentum spectrum was scattered from a liquid hydrogen target. The momenta and scattering angles of the forward-scattered protons were measured by a spark-chamber magnet spectrometer. The flight times and scattering angles of the recoil neutrons were measured by a bank of thick scintillation counters. The efficiencies of the neutron counters were determined in a separate measurement. Absolute normalization of the data was obtained from a measurement of the diffraction dissociation of neutrons from carbon nuclei. Differential cross sections, based on ~ 23 000 events, are presented for 9 different momenta. The shape of the differential cross sections and the momentum dependence are examined in detail.  相似文献   

2.
The analyzing power of 4He for neutron elastic scattering has been measured at four angles between 20° and 80° (lab) throughout the energy range 1.5–6.0 MeV using a doublescattering method. The intense flux of polarized neutrons was generated via the reactions Pb(γ, n) → 12C(n, n)12C, and the magnitude of the polarization of the neutron beam measured absolutely in a separate double-scattering experiment. Neutron energies were determined with a nanosecond time-of-flight spectrometer, and the generalized neutron spin-precession method was used to minimize systematic uncertainties.  相似文献   

3.
Contemporary linear accelerators applied in radiotherapy generate X-ray and electron beams with energies up to 20 MeV. Such high-energy therapeutic beams induce undesirable photonuclear (γ,n) and electronuclear (e,e'n) reactions in which neutrons and radioisotopes are produced. The originated neutron can also induce reactions such as simple capture, (n,γ), reactions that produce radioisotopes. In this work measurements of the non-therapeutic neutrons and the induced gamma radiation were carried out in the vicinity of a new medical accelerator, namely the Varian TrueBeam. The TrueBeam is a new generation Varian medical linac making it possible to generate the X-ray beams with a dose rate higher than in the case of the previous models by Varian. This work was performed for the X-ray beams with nominal potentials of 10 MV (flattening filter free), 15 MV and 20 MV, and for a 22 MeV electron beam. The neutron measurements were performed by means of a helium chamber and the induced activity method. The identification of radioisotopes produced during emission of the therapeutic beams was based on measurements of the energy spectra of gammas emitted in decays of the produced nuclei. The gamma energy spectra were measured with the use of the high-purity germanium detector. The correlation between the neutron field and the mode and nominal potential was observed. The strongest neutron fluence of 3.1 × 106 cm−2 Gy−1 and 2.0 × 106 cm−2 Gy−1 for the thermal and resonance energies, respectively, was measured during emission of the 20 MV X-ray beam. The thermal and resonance neutron fluence measured for the 15 MV X-rays was somewhat less, at 1.1 × 106 cm−2 Gy−1 for thermal neutrons and 6.7 × 105 cm−2 Gy−1 for resonance neutrons. The thermal and resonance neutron fluences were smallest for the 10 MV FFF beam and the 22 MeV electron beam and were around two orders of magnitude smaller than those of the 20 MV X-ray beam. This work has shown that the neutron reactions are dominant because of relatively high cross sections for many elements used in the accelerator construction. The detailed analysis of the measured spectra made it possible to identify 11 radioisotopes induced during TrueBeam delivery. In this work the following radioisotopes were identified: 56Mn, 122Sb, 124Sb, 131Ba, 82Br, 57Ni, 57Co, 51Cr, 187W, 24Na and 38Cl.  相似文献   

4.
The cell-killing potential of the 14N(n,p)14C reaction was considered with regard to neutron absorption in human nuclear DNA and respiratory phosphates for: (A) 1012 thermal neutrons in 1 kg of soft tissue, (B) a mono-energetic beam of 2 MeV neutrons incident in 1 kg of soft tissue such that the total collision kerma was 10 J/kg, and (C) an evenly distributed 0–66 MeV neutron beam, also incident in 1 kg such that the total collision kerma was 20 J/kg. For case (A) 0.0017 14N(n,p)14C reactions could be expected per DNA double strand, case (B) 0.053, and case (C) 0.0039. The probabilities that a proton emitted outside the nucleus would cross nuclear DNA were estimated from 14N tissue content for adult skeletal muscle, liver, and kidney tissues, for (1) nuclear DNA being concentrated in a sphere of 1.8 μm diameter, and (2) nuclear DNA being evenly distributed in a spherical nucleus 5 μm in diameter. It was concluded that even in a nitrogen-rich tissue exposed to a collision kerma of 20 J/kg by a 0–66 MeV fast neutron beam, the 14N(n,p)14C reaction directly kills at most 10 cells in every 1000, 4 of these by DNA nitrogen absorption and 6 by the 14N(n,p)14C protons emitted elsewhere in the cell. However, the dose due to the 14N(n,p)14C reaction should be measured where exposure to thermal neutron fluxes is significant. For therapeutic neutron doses the number of respiratory phosphate molecules in which the 14N(n,p)14C reaction occurs is insignificant, and doses from 14C-decay after neutron therapy are also negligible.  相似文献   

5.
FLUKA Monte Carlo radiation transport code has been used to simulate neutron fluence spectrum at iThemba LABS neutron beam facility. Neutron beams with energy up to 200 MeV can be produced using different targets such as 7Li, 9Be and 12C bombarded with monoenergetic protons from the Separated-Sector Cyclotron. Simulated results at 66 MeV were compared with measured data. Different neutron emission angles with respect to the beam axis as well as the neutron background at different positions have been investigated.  相似文献   

6.
The poor knowledge of the spin-dependent neutron scattering length of 3He has until now handicapped nuclear four body theory and the interpretation of excitations in the quantum liquid. We have measured, for the first time directly, the real part of the bound incoherent neutron scattering length, bi′ of 3He. A neutron spin echo spectrometer was used to detect pseudomagnetic precession of polarised neutrons passing through polarised 3He gas. Any absolute calibrations of sample and beam parameters were avoided using simple transmission measurements with non-polarised neutrons. The only a priory information required was the spin-dependent neutron absorption cross section of 3He. The result is bi′ = -2.365(20) fm, which reduces the prior uncertainty by a factor 30. The corresponding new value of the bound incoherent scattering cross section is σi = 1.532(12) barn. Including the known value of the coherent neutron scattering length, we obtain new values for the real parts of the free triplet and singlet neutron scattering lengths, a-′ = 7.370(58) fm and a+′ = 3.278(53) fm.  相似文献   

7.
Elastic scattering of 7, 9, 11, 20 and 26 MeV neutrons from 208Pb has been measured with the Ohio University Tandem Van de Graaff accelerator. Standard pulsed beam time-of-flight techniques were employed. Measurements of the incident flux at 0° were used to normalize the differential cross sections. The measured cross sections were corrected for dead time, detector efficiency, flux attenuation, multiple scattering, finite geometry, neutron source anisotropy and compound elastic contribution. Relative uncertainties are estimated to be between 5%–10% and the uncertainty in the normalization is estimated to be less than 5 %. The data were used to obtain neutron optical potential parameters. A comparison with proton optical parameters is presented, and the (p, n) quasi-elastic cross section is calculated and compared with available data. Deformation parameters for the 3? state (Q = ?2.615 MeV) and 5ā (Q = ?3.198 MeV) in 208Pb were obtained at incident energies of 11 and 26 MeV.  相似文献   

8.
We measured the neutron beam polarization of the BL05/NOP (Neutron Optics and Physics) beamline at J-PARC with an accuracy of less than 10−3 using polarized 3He gas as a neutron spin analyzer. Precise polarimetry of the neutron beam is necessary to understand the beamline optics as well as for the asymmetry measurements of the neutron beta decay, which are planned in this beamline.  相似文献   

9.
Measurements of the electric and magnetic form factors of the nucleon present a sensitive test of nucleon models and QCD-inspired theories. A precise knowledge of the neutron form factors at low Q2 is also essential to reduce the systematic errors of parity violation experiments. At the MIT-Bates Linear Accelerator Center, the nucleon form factors have been measured by means of scattering of polarized electrons from vector-polarized hydrogen and deuterium. The experiment used the longitudinally polarized stored electron beam of the MIT-Bates South Hall Ring along with an isotopically pure, highly vector-polarized internal atomic hydrogen and deuterium target provided by an atomic beam source. The measurements have been carried out with the symmetric Bates Large Acceptance Spectrometer Toroid (BLAST) with enhanced neutron detection capability.  相似文献   

10.
NPL, PTB, IRMM and IRSN are involved, within a scientific cooperation, in a comprehensive study aimed at developing reference low-energy monoenergetic neutron fields. This paper will explain the importance of such developments, highlighted by the over response of neutron survey meters in the keV energy range, and also describe the main difficulties encountered. The variation of the neutron yield with ion beam energy from the neutron threshold up to about 50 keV has been measured at IRSN AMANDE facility for the 45Sc(p,n), 65Cu(p,n), 51V(p,n), 57Fe(p,n) and 37Cl(p,n) reactions.  相似文献   

11.
The 6Li(n, α)3H cross section has been precisely measured between 12.0 and 18.2 MeV. The reactions are observed in a 6LiI(Eu) scintillator which serves simultaneously both as a target and a detector of the charged particle reaction products. A careful evaluation is made of the sources of experimental error including the attenuation of the neutron beam, self-shielding of the scintillator, peak area analysis and multiple scattering effects.  相似文献   

12.
We have designed and demonstrated a prototype on-beam spin-exchange optical pumping (SEOP) 3He neutron spin filter (NSF). It is designed as the incident neutron polarizer for spallation neutron sources, where the installation space is limited due to thick radiation shielding. The size of the NSF is roughly 50 cm×50 cm×25 cm including the diode-laser optics with a frequency narrowing external cavity, and a cylindrical 3He cell as large as a diameter of 5 cm and a length of 10 cm can fit. A neutron beam test was performed at the NOP beamline of JRR-3 to see the performance of the NSF.  相似文献   

13.
《Solid State Communications》2002,121(6-7):333-338
We report coherent inelastic neutron scattering measurements of the phonon dispersion relations and lattice dynamics shell model calculations of several microscopic and macroscopic properties of andalusite, Al2SiO5. Andalusite has an orthorhombic structure with 32 atoms/unit cell. The inelastic neutron scattering measurements (up to energy transfers of 45 meV) were carried out using the triple axis spectrometer at Dhruva reactor, India using a single crystal of andalusite and the phonon dispersion relations along the [100] direction have been measured. The shell model calculations have been used to compute the crystal structure, elastic constants, phonon frequencies, dispersion relations, density of states and the specific heat. The calculated results are in good agreement with available experimental data. The computed one-phonon neutron scattering structure factors based on the shell model have been very useful in the planning and analysis of the inelastic neutron scattering experiments.  相似文献   

14.
Spin-echo modulation small-angle neutron scattering (SEMSANS) is based on the detection of spatial beam modulation, which is induced by triangular spin echo precession regions and subsequent spin analyses. In order to detect such signal and exploit it for small angle scattering investigations neutron detection with sub-millimeter spatial resolution is required. Here an approach is reported where instead of a position sensitive detector an absorption grating is used to analyze the beam modulation stepwise. The spin-echo length scan in this case is performed by varying the sample-to-detector distance. The real space correlation functions of reference sample structures in the range 102 nm, i.e. giving rise to small-angle scattering in the very small-angle range, are recorded and analyzed successfully.  相似文献   

15.
The Gamma-3 assembly is located at the Joint Institute for Nuclear Research, Dubna, Russia. It consists of a cylindrical lead target (ø = 8 cm, L = 58.8 cm) surrounded by reactor grade graphite (110 × 110 × 60 cm). The target was irradiated with a beam of 1.6 GeV deuterons from the Nuclotron accelerator and CR-39 track detectors coupled to LR-115 2B film were used to measure the slow neutron distribution on the surface of the graphite. The detection efficiency of the CR-39 in the CR-39/LR-115 2B system was measured using a custom made calibration setup and found to be (1.12 ± 0.05) × 10−3 and (6.1 ± 1.2) × 10−4 tracks per neutron, for thermal and epithermal neutrons respectively, under the etching and counting procedures described in this work. The irradiation of the Gamma-3 was also simulated using MCNPX 2.7 Monte Carlo code and good agreement between the experimental and calculated track densities was found. This serves as a good validation for the computational models used to simulate spallation neutron production, transport and moderation.  相似文献   

16.
Angular distributions of the elastic scattering of 28Si on 29Si and 30Si have been measured for incident beam energies at E = 65 and 70 MeV with a time-of-flight spectrometer for heavy ions. At 70 MeV the neutron transfer 30Si(28Si, 29Si)29Si was observed in addition to the elastic channel. The pronounced oscillations in the elastic scattering distributions are interpreted as being due to an elastic transfer of neutrons between the colliding nuclei during the scattering process. This assumption is in accordance with some general features of the data and allows for the extraction of spectroscopic factors of the transferred neutrons.  相似文献   

17.
Energy selective neutron radiography was performed to describe a complex structure in polycrystalline materials. Experiments were performed with currently the highest energy and spatial resolutions achieved simultaneously, by employing a double crystal monochromator for selecting narrow energy bands from the initially polychromatic neutron beam and the neutron absorbing scintillator screen coupled with the cooled CCD camera as a detection system. It was shown that the detailed structure of the welded steel sample can be visualized and quantified by performing energy selective neutron imaging in the cold energy range, where elastic coherent scattering dominates the total cross section of the sample, showing characteristic Bragg edges. With the maps of crystallographic orientations over the sample area of ∼2×2 cm2 and thickness ∼11.2 mm, obtained directly from radiographs, the complex structure was energy resolved with a spatial resolution of ∼50 μm.  相似文献   

18.
《Hyperfine Interactions》2011,201(1-3):19-23
The backward angle phase of the G0 experiment has measured the beam-normal single-spin asymmetries in elastic scattering of transversely polarized electrons from the proton and made the first measurement in quasi-elastic scattering in deuterium at backward angles for Q2?=?0.22 GeV2/c2 and 0.63 GeV2/c2. The measurements were made at a lab scattering angle of 108° at beam energies of 362 MeV and 687 MeV respectively. Preliminary results for the proton are consistent with including ??N states in the calculation of the asymmetry in the resonance region. A preliminary estimate of the beam-normal single-spin asymmetry for the scattering from the neutron is made using a quasi-static deuterium model.  相似文献   

19.
We have developed a thermal neutron calibration method using a reactor produced neutron beam in JRR-3M of the Japan Atomic Energy Agency. Neutron-induced prompt gamma ray analysis has usually been performed in this beam line. Neutron energy distributions with negligible contributions from epithermal neutrons were measured by a time-of-flight method with a chopper made of 6LiF powder. The thermal neutron flux was determined by a gold foil activation method. We found that the thermal neutron beam in JRR-3M was well suited for calibration, neutron detector development or neutron dosimetry.  相似文献   

20.
The Neutron Measurements Laboratory of the Technical University of Madrid (LMN) has an automated panoramic irradiator with a 111 GBq 241Am–Be neutron source installed in a bunker-type large room. This facility is going to be used for calibration purposes. Recently, a spectrometry campaign involving four research groups working with different Bonner Sphere Spectrometers (BSS) and using different spectral unfolding codes was carried out. As part of these measurements the emission rate, B(t), was estimated. The application of the generalized fitting method to account for the scattering contribution is difficult due to specific characteristics of the neutron installation. A reduced fitting method, which includes room-return and in-scatter, has instead been used to overcome this problem.Detailed Monte Carlo simulations (with MCNPX code) were also performed to estimate the fluence rate using the measured source strength value. This was performed at different points. Results were then compared with measurements.Finally, the ambient dose equivalent rate measured with a neutron monitor (LB6411) was compared with results using the BSS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号