首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
This research is aimed at characterizing the thermal, mechanical, and morphological properties of carbon nanotubes (CNTs) reinforced poly(amide-imide) (PAI) composites having thiazol and amino acid groups which were prepared by sonication-assisted solution compounding. To increase the compatibility between the PAI matrix and CNTs, carboxyl-functionalized multiwall CNTs (MWCNTs-COOH) were used in this study. The MWCNTs were dispersed homogeneously in the PAI matrix while the structure of the polymer and the MWCNTs structure are stable in the preparation process as revealed by transmission electron microscopy. MWCNT/PAI composite films have been prepared by casting a solution of precursor polymer containing MWCNTs into a thin film, and its tensile properties were examined. The thermal stability, Young’s modulus, and tensile strength of PAI were greatly improved by the incorporation of MWCNTs and their good dispersion. Composites were also characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and thermal gravimetric analysis.  相似文献   

2.
Pristine multiwalled carbon nanotubes (MWCNTs) were impregnated in acrylonitrile butadiene rubber (NBR) using internal dispersion kneader and two roller mixing mill to investigate the effects of various nanotubes concentrations on the thermal transport/stability of rubber nanocomposites. Thermal conductivity (λ N) and thermal impedance (R) measurement experimental setups were established according to ASTM E1225-99 and D5470-03. The 1 mass % addition of MWCNTs in the polymer matrix has enhanced R up to 44 % and reduced λ N of the rubber nanocomposite up to 40 % compare to the base composite formulation. Thermal decomposition and differential thermal analyses of the fabricated composite specimens simulate that the thermal stability and endothermic capability are augmented with increasing the nanotubes contents in the host matrix. The progressive incorporations of carbon nanotubes into the rubber matrix have efficiently influenced the composite specimens regarding glass transition, crystallization, and melting temperatures including their specific enthalpies. Scanning electron microscopy along with the energy dispersive spectroscopy was used to analyze MWCNTs dispersion in NBR matrix, compositional analysis of the nanocomposite, and impregnated nanotubes.  相似文献   

3.
Multi-wall carbon nanotubes (MWCNTs) can be effectively dispersed by an ionic liquid-based polyether, poly(1-glycidyl-3-methylimidazolium chloride) (PGMIC) in aqueous solution. The amount of dispersed MWCNTs increases with the increasing of PGMIC concentration, and then decreases. Reaggregation of MWCNTs is observed when PGMIC exceeded the optimal concentration, which may be due to the conformational change of PGMIC molecules around MWCNT. The ultrasonic dispersion method is better than stirring method in the PGMIC solution. Furthermore, the acidic solution is convenient to prepare stable MWCNTs suspensions. Through the characterizations of ultraviolet–visible–near infrared, thermogravimetric analysis and Fourier transform infrared, it can be concluded that electrostatic repulsions, hydrophobic effect, n–π, and cation–π interactions played important roles in the dispersion of MWCNTs.  相似文献   

4.
In the present investigation, the preparation, characterization, and surface morphology of poly(amide‐imide) (PAI)/multi‐walled carbon nanotubes (MWCNTs) bionanocomposites (BNCs) were the main goals of the study. At first, an optically active PAI based on S‐valine as a biodegradable segment was synthesized. Then, carboxyl‐modified MWCNTs were functionalized with glucose (f‐MWCNT) as a biological active molecule in a green method to achieve a fine dispersion of f‐MWCNT bundles in the PAI matrix. The existence of S‐valine in the PAI matrix and functionalized MWCNT with glucose resulted in a series of potentially biodegradable nanocomposites. The obtained BNCs were characterized by various techniques. Field emission scanning and transmission electron microscopy micrographs of the composites showed a fine dispersion of f‐MWCNTs in the polymer matrix because of hydrogen bonding and π–π stacking interaction between f‐MWCNTs and polymer functional groups and aromatic moieties. Adding f‐MWCNTs into polymer matrix significantly improved the thermal stability of BNCs because of the increased interfacial interaction between the PAI matrix and f‐MWCNTs and also good dispersion of f‐MWCNT in the polymer matrix. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The phenol-formaldehyde-carbon nanotube composites were characterized for their free volume properties and interfacial interactions between nanotubes and the polymer matrix. The base polymeric material was a novolac type phenol-formaldehyde (PF) condensation resin cross-linked with para-toluene sulfonic acid. Multi-wall carbon nanotubes (MWCNTs) were synthesized using a catalytical chemical vapor deposition method and characterized using high-resolution transmission electron microscopy. The PF resin-carbon nanotubes composites having 2, 5, 10 and 20% (w/w%) MWCNTs were prepared. The crystallinity and morphology of the samples were characterized using X-ray diffraction and scanning electron microscopy. The free volume size in the polymer nanocomposites was observed to increase with the increase in nanotube content. Positron age momentum correlation (AMOC) studies revealed the electronic environment around different positron annihilation sites. The studies showed that ortho-positronium principally annihilates from interfacial regions of polymer and nanotubes in the nanocomposite. The positron lifetime studies together with AMOC measurements indicate an increase in the free volumes at the interface of polymer and MWCNTs in the composite. The free positron intensities showed that the polymer and nanotubes are weakly interacting in this system.  相似文献   

6.
Zirconium oxide is a ceramic material widely studied due to its mechanical and electrical properties that can be improved with the use of carbon nanotubes (CNTs) as reinforcement. The synthesis of CNT/zirconia composites by sol–gel method is still very scarce, due to the hydrophobic nature of the CNTs, being their dispersion in aqueous medium an intrinsic difficulty to the synthesis. In this work, we present a sol–gel synthesis for MWCNTs/zirconia composites, where two kinds of surfactants, sodium and ammonium stearates dissolved in water (1 g/100 mL), were used as dispersant agents for multiwall carbon nanotubes (MWCNTs). They are cheap and easy to prepare, and were very effective in dispersing the MWCNTs. Different quantities of MWCNTs (up to 5 wt%) were added in the solution of stearate/water and this solution with the highly dispersed MWCNTs was added to the zirconia sol–gel, producing composites of MWCNTs/zirconia with different concentrations of MWCNTs. All the powders were heat treated at 300 and 500 °C and the powder characterization was performed by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and infrared spectroscopy (FTIR). The composite MWCNTs/zirconia remained amorphous at 300 °C and presented a tetragonal phase at 500 °C with an average grain size of about 20 ± 3 nm, determined by the Scherrer equation from the XRD patterns. For these crystalline samples, TEM images suggest a more effective interaction between MWCNTs with ZrO2 matrix, where it can be observed that the carbon nanotubes are fully coated by the matrix.  相似文献   

7.
Thermal conductive and antistatic polyetherimide (PEI) nanocomposites were fabricated by encapsulating non‐destructive amido group functionalized multi‐walled carbon nanotubes (MWCNTs) into the PEI matrix. Briefly, nearly half of acyl chloride groups in poly (acryloyl chloride) reacted with sodium azide and formed acyl azide groups, which could conjunct with MWCNTs via non‐destruction nitrenes addition reaction. The remaining acyl chloride groups in poly (acryloyl chloride) hydrolyzed into carboxyl groups, therefore COOH‐rich MWCNTs (MWCNTs@azide polyacrylic acid) were synthesized without serious damage to the MWCNTs. Then, MWCNTs@azide polyacrylic acid were then reacted with p‐Phenylene diamine (PPD) and transformed to amido group functionalized MWCNTs (MWCNTs@PPD). MWCNTs@PPD could participate into the in situ polymerization of PEI matrix, where the conjunction between bisphenol A dianhydride and amido groups on MWCNTs@PPD guaranteed the strong covalent bonding at the PEI/MWCNTs interface, which directly avoided the aggregation of MWCNTs. Owing to the non‐destructive modification of MWCNTs and tight matrix/filler interface, the volume electric and thermal conductivity of as‐prepared nanocomposites was up to 6.4 × 10?8 S/cm (1.0 wt%, MWCNTs@PPD) and 0.43 W/(m · K) (4.0 wt%, MWCNTs@PPD), respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
碳纳米管改性聚苯硫醚熔纺纤维的结构与性能研究   总被引:1,自引:0,他引:1  
将多壁碳纳米管(MWCNTs)和聚苯硫醚(PPS)经过熔融挤出后制备成复合材料切片,并采用熔融纺丝法制得碳纳米管改性聚苯硫醚复合纤维.采用扫描电镜(SEM)、拉曼光谱、示差扫描量热分析(DSC)、动态机械分析(DMA)以及力学性能测试等表征手段研究了复合纤维中碳管的分散状态,与基体的界面作用,复合纤维的结晶性能以及力学性能,从而探讨了聚苯硫醚/碳纳米管复合纤维体系的微观结构与宏观性能之间的关系.研究表明,聚苯硫醚分子结构与碳纳米管之间具有的π-π共轭作用使碳管较为均匀的分散在基体中,界面结合较为紧密.同时熔融纺丝过程中的拉伸作用使碳管进一步解缠并使碳管沿纤维拉伸方向取向.另一方面,拉曼光谱显示拉伸作用有效地增强了界面作用,有利于外界应力的传递.碳管的良好分散以及强的界面作用使复合纤维力学性能得到大幅度的提高,当碳管含量达到5 wt%时,复合纤维的模量有了明显的提高,拉伸强度较纯PPS纤维提高了近220%.  相似文献   

9.
To improve the dispersion of multi‐walled walled carbon nanotubes (MWCNTs) and investigate the effect of dispersant for MWCNTs functionalization on the dielectric, mechanical, and thermal properties of Polyvinylidene fluoride (PVDF) composites, two different dispersants (Chitosan and TritonX‐100) with different dispersion capability and dielectric properties were used to noncovalently functionalize MWCNTs and prepare PVDF composites via solution blending. Fourier transform infrared, X‐Ray diffraction, and Raman spectroscopy indicated that TritonX‐100 and Chitosan were noncovalent functionalized successfully on the surface of MWCNTs. With the functionalization of Chitosan and TritonX‐100, the dispersion of MWCNTs changed in different extent, which was investigated by dynamic light scattering and confocal laser scan microscopy. The dielectric, mechanical, and thermal properties of PVDF composites were also improved. Meanwhile, it was also found that the dielectric properties of PVDF composites are closely related to the dielectric properties of dispersant. High dielectric constant of dispersant contributes to the grant dielectric constant of PVDF composites. The mechanical and thermal properties of MWCNTs/PVDF composites largely depend on the dispersion of MWCNTs in PVDF, interfacial interactions and the residual solvent. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Nonmodified multiwalled carbon nanotubes (MWCNTs)/sulfonated polyoxadiazole (sPOD) nanocomposites are successfully prepared by a facile solution route. The pristine MWCNTs are dispersed in a sPOD solution, and the mixtures are fabricated into thin films by solution casting. The homogeneous dispersion of nanotubes in the composites is confirmed by transmission electron microscopy. The mechanical properties, thermal stability, and electrical conductivity are investigated. Tensile strength, elongation at break, and tensile energy to break are shown to increase by more than 28, 45, and 73%, respectively, by incorporating up to 1.0 wt % pristine MWCNTs. The experimental values for sPOD/MWCNTs composite stiffness are compared with Halpin‐Tsai and modified Halpin‐Tsai predictions. The storage modulus is found to increase up to 10% at low CNT loading. The composite films, which have an outstanding thermal stability, show an increase of up to 57 °C in the initial degradation temperature. The addition of 1.0 wt % MWCNTs increases the electrical conductivity of the sPOD matrix by two orders of magnitude. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

11.
Thin polyetherimide (PEI) films containing 0.1–3 wt.% multi-walled carbon nanotubes (MWCNTs), have been prepared from three types of MWCNTs, namely pristine, oxidized and polymerized ionic liquid (PIL) functionalized CNTs. Oxidized and PIL functionalized CNTs (CNT–PIL) showed better dispersion in the matrix compared to pristine CNTs. For CNT–PIL, alignment of CNTs has been observed in the matrix. Regardless of the type of CNTs, their incorporation led to an increased thermal stability of the polymer matrix. Dynamic mechanical analysis showed that storage modulus increased by up to 25% (3 wt.% CNT–PIL) and an increase in the height of the damping peaks (tan δ). The addition of CNTs did not have any significant influence on the tensile properties and Tg of the polymer, and the electrical conductivity did not decrease in the case of modified CNTs.  相似文献   

12.
Matrix‐polymer‐functionalized multiwalled carbon nanotubes (MWCNTs) are demonstrated as a highly efficient toughening agent for matrix polymers. With poly(vinylidene fluoride) (PVDF) as the matrix polymer, the PVDF/MWCNT‐PVDF nanocomposite films show high toughness. With a small load amount of MWCNT‐PVDF (0.07 wt %), the nanocomposite film shows a yield point and a constant‐stress extension region in stress–strain tests, compared with the typical low‐extensibility feature of neat PVDF film. The PVDF/MWCNT‐PVDF‐0.7 film exhibits a 180‐fold increase of toughness and about 38‐fold increase in strain at break compared with neat PVDF film. This toughening effect is attributed to (a) homogeneous dispersion of MWCNT‐PVDF in PVDF, (b) the high efficiency of load‐transfer across MWCNT/PVDF interface, and (c) the long length of the MWCNTs. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

13.
Multi-walled carbon nanotubes (MWCNT)/poly(methyl methacrylate) (PMMA) nanocomposites were synthesized by the in situ reversible addition-fragmentation chain transfer (RAFT) polymerization of methyl methacrylate (MMA) in the presence of MWCNTs, at which the bulk polymer was grafted onto the surface of nanotubes through the ??grafting through?? strategy. For this purpose, MWCNTs were formerly functionalized with polymerizable MMA groups. MMA and PMMA-grafted MWCNTs were characterized by Fourier-transform infrared spectroscopy, Raman, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Dissolution of nanotubes was examined in chloroform solvent and studied by UV?Cvis spectroscopy. Thermogravimetric and degradation behavior of prepared nanocomposites was investigated by TGA. MWCNTs had a noticeable boosting effect on the thermal stability of nanocomposites. TGA thermograms showed a two-step weight loss pattern for the degradation of MWCNT-PMMA/PMMA nanocomposites which is contrast with neat PMMA. Introduction of MWCNTs also improved the dynamic mechanical behavior and electrical conductivity of nanocomposites. TEM micrograph of nanocomposite revealed that the applied methods for functionalization of nanotubes and in situ synthesis of nanocomposites were comparatively successful in dispersing the MWCNTs in PMMA matrix.  相似文献   

14.
Despite considerable efforts to synthesize nanotubes using porous alumina or polycarbonate membrane templates, few studies have addressed the resulting nanotube dispersion. We prepared dispersions of multilayered polyethylenimine/maleic anhydride alternating copolymer (PEI/MAAC) nanotubes synthesized with porous alumina templates. After mechanical polishing to remove the residual polymer surface layer from templates and subsequent template dissolution, the multilayered PEI/MAAC nanotubes were easily dispersed in water at neutral pH by polyelectrolyte adsorption, producing nanotube dispersions that were stable for at least 3 months. We characterized the dispersions using phase-contrast optical microscopy, electro-optics, electrophoresis, and viscometry to help understand their colloidal properties in the dilute and semidilute regimes. The dispersions were resistant to salt-induced aggregation up to at least 1 mM NaCl and were optically anisotropic when subjected to an electric field or flow. Interestingly, the electrophoretic mobility of polystyrene sulfonate (PSS)-stabilized nanotubes increases with increasing ionic strength, because of the high surface charge and softness of the adsorbed polyelectrolyte. Furthermore, unlike many rod-like colloid systems, the polymer nanotube dispersion has low viscosity because of weak rotary Brownian motions and strong tendency to shear thinning. At the high shear rates achieved in capillary viscometry experiments, however, we observed a slight shear thickening, which can be attributed to transient hydrocluster formation.  相似文献   

15.
The dispersion of the nanometer-sized carbon nanotubes in a polymer matrix leads to a marked improvement in the properties of the polymer. This approach can also be applied to biodegradable synthetic aliphatic polyesters such as poly(l-lactide) (PLLA), which has received a great deal of attention due to environmental concerns. In this study, PLLA was melt compounded with multiwalled carbon nanotubes (MWCNTs). A high degree of dispersion of the MWCNTs in the composites was obtained by grafting PLLA onto the MWCNTs (PLLA-g-MWCNTs). After oxidizing the MWCNTs by treating them with strong acids, they were reacted with l-lactide to produce the PLLA-g-MWCNTs. The morphology of the composite was observed with scanning electron microscopy. The mechanical properties of the PLLA/PLLA-g-MWCNT composite were higher than those of the PLLA/MWCNT composite. The thermal stability of the composites was studied using thermogravimetric analysis and their activation energy during thermal degradation was determined using the Kissinger and Flynn-Wall-Ozawa methods. The activation energy of PLLA/PLLA-g-MWCNT was higher than that of PLLA/MWCNT, which indicates that the composite made with the PLLA-g-MWCNTs was more thermally stable than the composite made with the MWCNTs.  相似文献   

16.
We report that oxidized multiwalled carbon nanotubes (MWCNTs) can be synchronously dispersed and functionalized in TiO2 sol via an in situ sol-gel process. Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and atomic force microscopy (AFM) were used to characterize the functionalized MWCNTs. The results revealed that the hydrolysis and condensation originated from Ti(OC4H9)4 molecules favor the dispersion of MWCNTs in as-prepared TiO2 sol. Based on the strong interaction between the oxidized MWCNTs and TiO2 sol during the in situ sol-gel process, MWCNT (core)-TiOx (shell) tubular composites and TiO2 nanotubes can be obtained through filtrating, washing, and annealing of this kind of TiO2 sol containing functionalized MWCNTs, as revealed by TEM, XPS, Raman spectroscopy, and redispersion experiment. By casting the dilute dispersion of functionalized MWCNTs onto a hydrophilic Si surface, discrete and individual nanotubes can be observed by AFM.  相似文献   

17.
Highly aligned and twisted composite Nylon 6 nanofibers incorporating multiwall carbon nanotubes (MWCNTs) were successfully electrospun, using a novel mechanism. It has been found that; ultrasound combined with high speed shearing is the simplest and most convenient method to improve the dispersion of MWCNTs into a polymer matrix with a certain loading. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were conducted to characterize the morphology of nanofibers, the dispersion of MWCNTs and their alignment inside the fiber body. By manipulating the electrical forces during electrospinning and applying mechanical stretching to the electrospun nanofibers, high polymer chain orientation and better alignment of the MWCNTs particles along the fiber axis was achieved. Twist was applied to the nanofibers for providing the required inter fiber lateral cohesion interaction and friction thus, spinning a continuous twisted composite yarn. SEM images show twisted yarns with diameters ranging between 5 and 10 μm. The twist effect of the parallel bundle was investigated by controlling the twist per unit length using a motor speed controller at values of 100, 250, 500, 750 and 1000 rpm. The paper also provides a comprehensive review of various yarn spinning mechanisms of electrospun nanofibers.  相似文献   

18.
Polypropylene random copolymer nanocomposites having 0.2–7.0 vol% multi-walled carbon nanotubes (MWCNTs) were prepared via melt processing. Transmission electron microscopy (TEM) was employed to determine the nano scale dispersion of carbon nanotubes. Linear viscoelastic behavior of these nanocomposites was investigated using parallel plate rheometry. Incorporation of carbon nanotubes in the polymer matrix resulted in higher complex viscosity (η*), storage (G′) and loss modulus (G″) as compared to neat polymer, especially in the low-frequency region, suggesting a change from liquid to solid-like behavior in the nanocomposites. By plotting storage modulus vs. carbon nanotube loading and fitting with a power law function, the rheological percolation threshold in these nanocomposites was observed at a loading of ∼0.27 vol% of MWCNTs. However, electrical percolation threshold was reported at ∼0.19 vol% of MWCNTs loading. The difference in the percolation thresholds is understood in terms of nanotube connectivity with nanotubes and polymer chain required for electrical conductivity and rheological percolation.  相似文献   

19.
Poly(ethylene terephthalate) (PET) based nanocomposites have been prepared with single walled carbon nanotubes (SWNTs) through an ultrasound assisted dissolution-evaporation method. Differential scanning calorimetry studies showed that SWNTs nucleate crystallization in PET at weight fractions as low as 0.3%, as the nanocomposite melt crystallized during cooling at temperature 24 °C higher than neat PET of identical molecular weight. Isothermal crystallization studies also revealed that SWNTs significantly accelerate the crystallization process. Mechanical properties of the PET-SWNT nanocomposites improved as compared to neat PET indicating the effective reinforcement provided by nanotubes in the polymer matrix. Electrical conductivity measurements on the nanocomposite films showed that SWNTs at concentrations exceeding 1 wt% in the PET matrix result in electrical percolation. Comparison of crystallization, conductivity and transmission electron microscopy studies revealed that ultrasound assisted dissolution-evaporation method enables more effective dispersion of SWNTs in the PET matrix as compared to the melt compounding method.  相似文献   

20.
In this study a series of multi-walled carbon nanotube (MWCNT)/Polyethylene (PE) composites with different kinds and several concentrations of carbon nanotubes (CNTs) were investigated. The morphology and degree of dispersion of the fillers in the polymer matrix at different length scales was investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Both individual and agglomerated MWCNTs were evident but a good dispersion was observed for some of them. TGA measurements were performed on nanocomposites in order to understand if CNTs affect the stabilization mechanism during thermal and oxidative degradation. The analysis demonstrates that MWCNTs presence slightly delays thermal volatilisation (15-20 °C) without modification of thermal degradation mechanism. In contrast, thermal oxidative degradation in air is delayed up to about 100 °C dependently from MWCNTs concentration, in the range used here (0.1-2.0 wt%), and degree of dispersion. The stabilization is due to the formation of a thin protective layer of entangled MWCNTs kept together by carbon char generated on the surface of the nanocomposites as shown by SEM images taken on degradation residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号