首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Results of a study of transient optical absorption (TOA) and luminescence of lithium gadolinium orthoborate Li6Gd(BO3)3 (LGBO) in the visible and UV spectral regions are presented. As revealed by absorption optical spectroscopy with nanosecond time resolution, the LGBO TOA derives from optical transitions in hole centers, with the optical density relaxation kinetics being mediated by interdefect tunneling recombination involving these centers and neutral lithium atoms acting as electronic Li0 centers. At 290 K, the Li0 centers are involved in thermostimulated migration, which is not accompanied by carrier transfer to the conduction or valence band. The slow components of the TOA decay kinetics, with characteristic times ranging from a few milliseconds to seconds, have been assigned to diffusion-limited annihilation of lithium interstitials with vacancies. The mechanisms responsible for the creation and relaxation of short-lived Frenkel defect pairs in the LGBO cation sublattice have been analyzed.  相似文献   

2.
The transient optical absorption and luminescence of LiB3O5 (LBO) nonlinear crystals in the visible and UV spectral ranges were studied. Measurements made using absorption optical spectroscopy with nsscale time resolution revealed that the transient optical absorption (TOA) in LBO originates from optical transitions in hole centers and that the kinetics of optical density relaxation are rate-limited by interdefect nonradiative tunneling recombination involving these hole centers and the Li0 electronic centers, which represent neutral lithium atoms. At 290 K, the Li0 centers can migrate in a thermally stimulated, one-dimensional manner, a process which is not accompanied by carrier delocalization into the conduction or valence band. It is shown that the pulsed LBO cathodoluminescence kinetics is rate-limited by a recombination process involving two competing valence-band-mediated hole centers and shallow B2+ electronic centers. The radiative recombination accounts for the characteristic σ-polarized LBO luminescence in the 4.0-eV region.  相似文献   

3.
This paper reports on a study of the transient optical absorption exhibited by Li2B4O7 (LTB) in the visible and UV spectral regions. Using absorption optical spectroscopy with nanosecond time resolution, it is established that the transient optical absorption (TOA) in these crystals originates from optical transitions in hole centers and that the kinetics of the optical-density relaxation is controlled by interdefect tunneling recombination, which involves these hole centers and electronic Li0 centers representing neutral lithium atoms. At 290 K, the Li0 centers migrate in a thermally stimulated, one-dimensional manner, without carrier ejection into the conduction or valence band. The kinetics of the pulsed LTB cathodoluminescence is shown to be controlled by a relaxation process connected with tunneling electron transfer from a deep center to a small hole polaron migrating nearby, a process followed by the formation of a self-trapped exciton (STE) in an excited state. Radiative annihilation of the STE accounts for the characteristic σ-polarized LTB luminescence at 3.6 eV, whose kinetics is rate-limited by the tunneling electron transfer.  相似文献   

4.
This paper reports on a study of the kinetics of electron tunneling transport between electron and hole centers in Li2B4O7 and LiB3O5 lithium borate crystals under the conditions where the mobility of one of the partners in the recombination process is thermally stimulated. A mathematical model has been proposed to describe all specific features in the relaxation kinetics of the induced optical density observed in Li2B4O7 (LTB) and LiB3O5 (LBO) nonlinear optical crystals within a broad time interval of 10−8−1 s after a radiation pulse. The results of calculations have been compared with experimental data on transient optical absorption (TOA) of LTB and LBO crystals in the visible and ultraviolet spectral regions. The nature of the radiation defects responsible for TOA and the dependence of the TOA decay kinetics on temperature, excitation power, and other experimental conditions have been discussed.  相似文献   

5.
A study of transient optical absorption of the ADP (NH4H2PO4) and KDP (KH2PO4) nonlinear crystals in the visible and UV spectral regions is reported. Measurements made by absorption optical spectroscopy with nanosecond-time resolution established that the transient optical absorption (TOA) of these crystals originates from optical transitions in the hole A and B radicals and the optical-density relaxation kinetics is rate-controlled by interdefect tunneling recombination, which involves these hole centers and the electronic H0 centers representing neutral hydrogen atoms. At 290 K, hole polarons and the H0 centers undergo thermally stimulated migration, which is not accompanied by carrier ejection into the conduction or valence band. The slow components of the TOA kinetics with characteristic times from a few tens of milliseconds to a few seconds can be assigned to diffusion-controlled annihilation of hydrogen vacancies associated with impurity or structural defects.  相似文献   

6.
A model of electron transfer by tunneling between trapped electron and hole centers in crystals with hydrogen bonds under the conditions of thermostimulated mobility of one carrier type in the recombination process has been developed. The proposed model describes all features in the kinetics of induced optical density relaxation observed in nonlinear optical crystals of KH2PO4 (KDP) and NH4H2PO4 (ADP) on a wide temporal scale (10−8–10 s) under pulsed irradiation. The results of model calculations have been compared with experimental data on the photoinduced transient optical absorption (TOA) in KDP and ADP crystals in the visible and UV ranges. The nature of the radiation-induced defects, which account for the TOA, and the dependence of the TOA decay kinetics on the temperature, excitation power, and other experimental conditions have been considered.  相似文献   

7.
A study of recombination kinetics in LiB3O5 (LBO) crystals by time-resolved luminescence and absorption spectroscopy is reported. An investigation of the kinetics of transient optical absorption (TOA) and luminescence under ns-scale electron-beam excitation performed within a broad temperature range of 77–500 K and a 1.2–5-eV spectral interval has established that the specific features in the recombination kinetics observed in LBO involve electronic, B2+, and hole, O, trapping centers. The TOA and luminescence kinetics, as well as their temperature dependence, are interpreted by a model of competing hole centers. Relations connecting the kinetics parameters and the temperature dependence to the parameters of the main LBO point defects are presented. Fiz. Tverd. Tela (St. Petersburg) 40, 2008–2014 (November 1998)  相似文献   

8.
The experimental data on the transient optical absorption of wide-band-gap optical crystals of lithium borates Li2B4O7, LiB3O5, and Li6Gd(BO3)3 and potassium (KH2PO4 (KDP)) and ammonium (NH4H2PO4 (ADP)) dihydrogen phosphates in the visible and ultraviolet spectral regions are analyzed using the theory of diffusion-controlled tunneling recombination. A nanosecond pulsed radiation action on these crystals is shown to form defect pairs, such as polaron-type hole centers and electron centers based on interstitial cations. The relaxation kinetics of these centers over a wide time range of 10?8?10 s is described by a proposed model of tunneling electron transfer between antimorphous defects in the cation sublattice under the thermally stimulated mobility of recombination partners. The numerical values of the kinetic parameters are determined and the time dependences of the reaction rate constants are calculated for all crystals under study. As a result, the dynamics of change in the optical properties of these crystals under a pulsed radiation action can be simulated.  相似文献   

9.
Infrared spectra (700-30 cm-1) of several lithium intercalates (chemically prepared) LixMPS3, with M=Fe, Ni and 0<x<1.5, have been recorded and compared with those known for the corresponding host lattices. These lithium intercalates are mainly characterized by new absorption bands at 336 cm-1 and 310 cm-1 for the iron and nickel compounds, respectively. These bands assigned to lithium vibrations increase progressively with lithium content : it is concluded that Li+ ions are more likely to occupy the 2d and 4h “octahedral” sites in the gaps. In addition, the spectra of the nickel derivatives reveal some geometric distortion within the layers and a progressive strengthening of the Ni-S interactions. These results are correlated to the best energy yields obtained in NiPS3/lithium batteries.  相似文献   

10.
Structural and photoluminescence properties of Dy3+ doped lithium fluoro-borate glasses with the compositions Li2B4O7–BaF2–NaF–MO (where M=Mg, Ca, Cd and Pb), Li2B4O7–BaF2–NaF–MgO–CaO and Li2B4O7–BaF2–NaF–CdO–PbO have been investigated through XRD, FTIR, optical absorption, emission and decay measurements. From the optical absorption spectra, Judd–Ofelt intensity parameters (Ωλ, λ=2, 4 and 6) have been evaluated and are in turn used to predict radiative properties such as radiative transition probabilities (AT), branching ratios (βr) and stimulated emission cross sections (σp) for all emission levels of Dy3+ ion in different lithium fluoro-borate glass matrices. From the emission spectra, chromaticity color coordinates have been calculated and indicated emission color for all glass matrices. The nature of decay profiles of 4F9/2 state of Dy3+ in all the glass matrices are analyzed.  相似文献   

11.
Polarized luminescence and transient optical absorption (TOA) induced by pulsed electron irradiation in beryllium oxide crystals were studied. Exponential stages with decay times τ = 6.5 ms were observed to exist in luminescence bands at 4.0, 5.0, and 6.7 eV, which coincide in spectral composition and polarization characteristics with the luminescence of self-trapped excitons (STEs) of two types. The formation efficiency of centers with a 6.5-ms decay time is comparable to that of triplet STEs. The general characteristics of the kinetics and the decay times of the TOA of these centers do not depend on electron fluence and are governed by the monomolecular recombination process. The spectra of TOA centers with a decay time of 6.5 ms were found to be similar to those of V-type hole centers and STE hole components. The mechanism by which recombination of closely spaced, spatially correlated Frenkel pairs, Be+ and V? centers, brings about an exponential component with a 6.5-ms decay time in the luminescence of STEs of two types in BeO is discussed.  相似文献   

12.
Pure and Er3+-doped Li6Y(BO3)3 single crystals have been grown by the Czochralski method. The angular relationship between the crystallographic axes and the principal axes of the optical indicatrix has been determined. The principal refractive indices of the pure Li6Y(BO3)3 crystal have been measured. The polarized absorption and fluorescence spectra of the Er3+-doped Li6Y(BO3)3 crystal have been recorded. Spectroscopic parameters of the Er3+-doped Li6Y(BO3)3 crystal, including the intensity parameters Ωt (t=2,4,6), spontaneous emission probabilities, fluorescence branching ratios, radiative lifetimes, fluorescence quantum efficiency, and stimulated emission cross sections have been calculated and analyzed. The results show that the Er3+-doped Li6Y(BO3)3 crystal may be a gain medium for tunable and ultra short pulse lasers around 1.55 μm. PACS 78.20.-e; 42.70.Hj  相似文献   

13.
This paper reports on a study of transient optical absorption and pulsed cathodoluminescence in APb2Cl5 (A = K, Rb) in the visible and ultraviolet spectral regions. The measurements performed by absorption optical spectroscopy with nanosecond time resolution showed the transient optical absorption of APb2Cl5 to derive from optical transitions in hole centers, and that the optical density relaxation kinetics is mediated by interdefect tunneling recombination in complementary pairs which involves Frenkel defects on the cation sublattice and self-trapped carriers. The slow components in the transient optical absorption decay kinetics, with characteristic times ranging from a few ms to seconds, have been assigned to diffusion-mediated annihilation of interstitial atoms with alkali metal vacancies. The mechanisms underlying creation and relaxation of the short-lived Frenkel defects on the cation sublattice and self-trapped carriers have been analyzed.  相似文献   

14.
The paper reports on a study of the luminescence of lithium borate crystals (Li6Gd(BO3)3 doped by Eu3+ and Ce3+ ions, Li5.7Mg0.15Gd(BO3)3: Eu, and Li6Eu(BO3)3) initiated by selective excitation by synchrotron radiation at excitation energies of 3.7–27 eV at 10 and 290 K. Efficient energy transfer between the rare-earth ions Gd3+ → Ce3+ and Gd3+ → Eu3+ was found to proceed by the resonance mechanism, as well as by electron-hole recombination. Fast decay kinetics of luminescence of the Ce3+ activator centers was studied under intracenter photoexcitation and excitation in the interband transition region. The mechanisms involved in luminescence excitation and radiative relaxation of electronic states of rare-earth ions are analyzed, and the energy transfer processes operating in these crystals are discussed.  相似文献   

15.
Chemical and electrochemical studies have shown that various titanium oxides can incorporate lithium in different ratios. Other compounds with a spinel-type structure and corresponding to the spinel oxides LiTi2O4 and Li4Ti5O12 have been evaluated in rechargeable lithium cells with promising features. The spinel Li[Li1/3Ti5/3]O4 [1–5] compound is a very appealing electrode material for lithium ion batteries. The lithium insertion-deinsertion process occurs with a minimal variation of the cubic unit cell and this assures high stability which may reflect into long cyclability. In addition, the diffusion coefficient of lithium is of the order of 10−8 cm2s−1 [5] and this suggests fast kinetics which may reflect in high power capabilities. In this work we report a study on the kinetics and the structural properties of the Li[Li1/3Ti5/3]O4 intercalation electrode carried out by: cyclic voltammetry, galvanostatic cycling and in-situ X-ray diffraction. The electrochemical characterization shows that the Li[Li1/3Ti5/3]O4 electrode cycles around 1.56 V vs. Li with a capacity of the order of 130 mAhg−1 which approaches the maximum value of 175 mAhg−1 corresponding to the insertion of 1 equivalent per formula unit. The delivered capacity remains constant for hundred cycles confirming the stability of the host structure upon the repeated Li insertion-deinsertion process. This high structural stability has been confirmed by in situ Energy Dispersion X-ray analysis. Paper presented at the 7th Euroconference on Ionics, Calcatoggio, Corsica, France, Oct. 1–7, 2000.  相似文献   

16.
This paper reports the growth and optical properties of Eu2+/Li+-co-doped SrB4O7 single crystals. High-quality Eu,Li:SrB4O7 crystals without macro-defects or cracks were grown using the top-seeded solution growth (TSSG) method. The absorption and luminescent properties were measured and different spectra were observed in the as-grown crystals. As the doping amount of lithium increases, the absorption peak at 300 nm becomes stronger and the emission peak shifts to a longer wavelength. This phenomenon could be attributed to the doping lithium ions, which might affect the electric field distribution in the lattice structure.  相似文献   

17.
The process of F-center aggregation under light irradiation, which involves ionic movement at low temperatures (observable down to — 60°C), is not at all understood in its mechanism. It is the aim of this work to evaluate quantitatively the kinetics of this process for different F-aggregate centers. In part I the assoziation of F-centers in KCl crystals with isolated Na+ or Li+ ions was thoroughly investigated as the clearest model case of F-center-aggregation. The reaction product in these crystals after light irradiation, an F-center associated to a Na+ or Li+ ion as nearest (100) neighbor (F A -center), is well established in its model and can be detected by its double peak absorption structure. By optical measurements of the rate of F A -center formation in dependence on light-intensity, time, Na+ or Li+-concentration, F→F′ conversion rate and temperature, the kinetics of this reaction could be evaluated in a simple equation of bimolecular type. The analysis leads to the conclusion, that either the anion vacancy or the F′-center must be regarded as a unit of high thermal mobility (activation energy 0·6±0·05 eV, jump frequency about 102 sec?1 at room temperature) which diffuses randomly in the lattice and can be captured by a Na+ or Li+ ion.  相似文献   

18.
The broadband luminescence of chromium optical centers with strongly overlapping spectral lines and similar emission probabilities from excited 4 T 2 states of red and green Cr3+ centers in stoichiometric magnesium-doped lithium niobate crystals has been separated for the first time. The spectral-luminescence characteristics and parameters of intracenter interaction between red and green optical Cr3+ centers in stoichiometric lithium niobate have been calculated. The luminescence quantum efficiencies of red and green chromium centers are determined.  相似文献   

19.
The efficiency of formation and time evolution of radiation-induced structural defects and pulsed luminescence in KPb2Cl5 crystals under the action of a single electron pulse (E = 250 keV, τ = 20 ns) have been investigated. The spectra (1.1–3.8 eV) and relaxation kinetics (time interval 5 × 10?8?5 s) of transient optical absorption and the pulsed cathodoluminescence spectra and decay kinetics (1.4–3.1 eV) have been measured in the temperature range 80–300 K. It is revealed that the induced optical density and its time evolution depend strongly on temperature, and the absorption relaxation time contains several components and reaches several seconds at T = 300 K. The decay kinetics of transient absorption and pulsed cathodoluminescence kinetics have different orders and are controlled by different relaxation processes.  相似文献   

20.
A new iron center in stoichiometric lithium niobate crystals has been studied by the EPR method. The angular dependences of the EPR spectrum of the center have been used to derive the parameters of its spin Hamiltonian. The data amassed on the variation in the concentrations of two iron centers in lithium niobate crystals annealed in a Li2CO3 powder have provided an insight into the mechanism of formation of the new center, as well as corroborated its model proposed by us earlier. According to this model, the center represents a complex of two defects aligned with the polar axis in the crystal: the iron ion at the niobium site and an interstitial lithium ion filling the nearest structural vacancy (Fe3+[Nb]-Li+[V]). The structure of other Fe3+ centers revealed earlier in LiNbO3 crystals, in which the iron ion occupies the niobium site, has been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号