首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 417 毫秒
1.
Phosphorus oxide structures were synthesized on the surface of porous gamma alumina, with phosphorus oxychloride and water vapors used as reagents for successive and alternating (up to four times) treatment of a solid-phase matrix by the molecular layering method with in situ monitoring of the process. It was shown that this procedure yields a double-phase system constituted by a core (aluminum oxide) and shell (amorphous phosphorus oxide layer) with a prescribed chemical composition and structure with characteristics dependent on the number of molecular layering cycles. With increasing treatment rate (from 1 to 4) of the solid-phase matrix with halide and water vapors, the concentration of phosphorus in the samples steadily grows. In the process, the specific surface area, pore volume, and pore size in the double-phase system being formed become smaller. The results obtained in the study are of interest for development of catalytic, sorption, and other functional systems of the core–shell type.  相似文献   

2.
The helical nanofilament (HNF) and low-temperature dark conglomerate (DC) liquid-crystal (LC) phases of bent-core molecules show the same local layer structure but present different bulk morphologies. The DC phase is characterized by the formation of nanoscale toric focal conics, whereas the HNF phase is constructed of bundles of twisted layers. Although the local layer structure is similar in both phases, materials that form these phases tend to form one morphology in preference to the other. Targeted control of the nanostructures would provide pathways to potential applications and insight into how conditions drive a specific phase formation. Here, W624, a compound known to form the DC phase is confined in nanometer scale channels of porous anodized aluminum oxide (AAO) membranes. Within each nanochannel, the DC phase is suppressed forming the HNF structure instead, indicating the nanoscale spatial limitation can control the phase structure of the DC phase.  相似文献   

3.
The layered double hydroxide of Mg with Al decomposes below 600 degrees C with the loss of nearly 48% mass, resulting in the formation of an oxide residue having the rock salt structure and nanoparticulate morphology. However, this product reconstructs back into the parent LDH, owing to its compositional and morphological metastability. The oxide can be kinetically stabilized within an amorphous phosphate network built up through an ex situ reaction with a suitable phosphate source such as (NH4)H2PO4. This oxide transforms into a thermodynamically more stable phase with a spinel structure on soaking in an aqueous medium. The oxide residue has a nanoparticulate morphology as revealed by the Scherrer broadening of the Bragg reflections as well as by electron microscopy. This work shows that the hydroxide reconstruction reaction and spinel formation are competing reactions. Suppression of the former catalyzes spinel formation as the excess free energy of the metastable oxide residue is unlocked to promote the diffusion of Mg2+ ions from octahedral to tetrahedral sites, which is the essential precondition to the formation of a normal spinel. This reaction taking place as it does at ambient temperature and in solution helps in the retention of a nanostructured morphology for the spinel. Another way of stabilizing the oxide is by incorporating the thermally stable borate anion into the LDH. This paves the way for an in situ reaction between the cations of the host LDH and the borate guest. The in situ reaction directly leads to the formation of an oxide with a spinel structure.  相似文献   

4.
Differential scanning calorimetry, thermogravimetry, and X-ray diffraction analysis were used to study the fundamental aspects of structural-chemical transformations occurring under the action of temperature in the range 50–1530°C in the system constituted by alumina core and phosphorus oxide shell synthesized by the molecular-layering method. It was shown that, as the P/Al molar ratio in the system increases from 0.05 to 0.14, the stability range of low-temperature forms of alumina extends to higher temperatures because crystalline aluminum phosphate is formed on the surface. It was demonstrated that using an inorganic binder based on a silicate binding agent and alumina modified with an aluminum phosphate layer provides a ~3.5-fold increase in the mechanical strength of the material at a ~5-fold decrease in the internal stress as compared with the composition with the unmodified oxide.  相似文献   

5.
A nanochannel array based nanodevice can mimic the biological environments and thus unveil the natural properties, conformation and recognition information of biomolecules such as proteins and DNA in confined spaces. Here we report that porous anodic alumina (PAA) of a highly parallel nanochannel array covalently modified with proteins significantly modulates the transport of a negatively charged probe of ferricyanide due to the electrostatic interactions between the probes and modified nanochannel inner surface. Results show that such electrostatic interaction exists in a wide range of ionic strength from 1 mM to 100 mM in 20 nm nanochannels modified with proteins (hemoglobin, bovine serum albumin, and goat anti-rabbit IgG secondary antibody). In addition, the maximal steady-state flux of the charged probe through the modified nanochannel array is directly related to the ionic strength which determines the electric double layer thickness and solution pH which modulates the nanochannel surface charge. Thus, the modulated mass transport of the probe by solution pH can be used to study the charge properties of the immobilized proteins in nanochannel confined conditions, leading us to obtain the isoelectric point (pI) of the proteins confined in nanochannels. The determined pI values of two known proteins of hemoglobin and bovine serum albumin are close to the ones of the same proteins covalently modified on a 3-mercaptopropionic acid self-assembled monolayer/gold electrode. In addition, the pI of an unknown protein of goat anti-rabbit IgG secondary antibody confined in nanochannels was determined to be 6.3. Finally, the confinement effect of nanochannels on the charge properties of immobilized proteins has been discussed.  相似文献   

6.
Porous anodic alumina oxide (AAO) is one of the most commonly used nanotemplates for growing arrays of nanoparticles, nanowires, nanocomposites, and nanoarchitectures because its pores, which are of a very uniform size, can grow longitudinally into arrays of self-aligned nanochannels with an extremely high aspect ratio. Furthermore, under specific combinations of anodization voltage and electrolyte, the lateral positions of nanochannels can self-organize into arrays of two-dimensional hexagonally close-packed lattices with domain sizes on the order of few tens of lattice units. The domain size can be greatly increased by prepatterning the Al surface with custom-designed nanoconcaves prior to the anodization process. The concaves guide the growth fronts of nanochannels and lead to the formation of an ideally long-range ordered lattice of nanochannel array. Such concaves have been fabricated by many methods, such as stamp imprinting, grating imprinting, and focused ion beam direct writing. In this review, we summarize the development of various methods to create AAO nanochannel arrays with custom-made geometry and discuss the mechanism responsible for the guiding process.  相似文献   

7.
We propose a barrierless mechanism for describing the oxidation of Al(111) in which oxygen atoms located on the outer surface extract aluminum atoms of the surface layers through local cooperation of other pre-adsorbed oxygen atoms. We show the details of this complex chemical process that kinetically competes with the non-destructive formation of an oxygen monolayer onto the Al surface, thus elucidating the initial aluminum oxidation regime. We demonstrate that further stripping of the complete surface Al layer is consistent with both (i) the formation of a defective alumina structure and (ii) an oxide capping layer preventing further oxidation at low temperature.  相似文献   

8.
The low-temperature glycine-nitrate combustion method was employed to synthesize nanopowders based on nonstoichiometric magnesium-aluminum spinel MgAl2+δO4+1.5δ with the degree of nonstoichiometry δ = 0.76–9.48, whose average crystallite size decreases from 16 to 6 nm as spinel is enriched with alumina. Analysis of the nanopowders suggests that they have a complex structure composed of nonstoichiometric spinel crystallites and an amorphous alumina part. The powders synthesized hold promise as catalyst supports, sorbents, and functional materials with high surface areas.  相似文献   

9.
The layered double hydroxides (LDHs) of Co with trivalent cations decompose irreversibly to yield oxides with the spinel structure. Spinel formation is aided by the oxidation of Co(II) to Co(III) in the ambient atmosphere. When the decomposition is carried out under N2, the oxidation of Co(II) is suppressed, and the resulting oxide has the rock salt structure. Thus, the Co-Al-CO(3)(2-)/Cl- LDHs yield oxides of the type Co(1-x)Al(2x/3) square(x/3)O, which are highly metastable, given the large defect concentration. This defect oxide rapidly reverts back to the original hydroxide on soaking in a Na2CO3 solution. Interlayer NO(3)- anions, on the other hand, decompose generating a highly oxidizing atmosphere, whereby the Co-Al-NO(3)- LDH decomposes to form the spinel phase even in a N2 atmosphere. The oxide with the defect rock salt structure formed by the thermal decomposition of the Co-Fe-CO(3)(2-) LDH under N2, on soaking in a Na(2)CO(3) solution, follows a different kinetic pathway and undergoes a solution transformation into the inverse spinel Co(Co,Fe)(2)O(4). Fe3+ has a low octahedral crystal field stabilization energy and therefore prefers the tetrahedral coordination offered by the structure of the inverse spinel rather than the octahedral coordination of the parent LDH. Similar considerations do not hold in the case of Ga- and In-containing LDHs, given the considerable barriers to the diffusion of M3+ (M=Ga, In) from octahedral to tetrahedral sites owing to their large size. Consequently, the In-containing oxide residue reverts back to the parent hydroxide, whereas this reconstruction is partial in the case of the Ga-containing oxide. These studies show that the reversible thermal behavior offers a competing kinetic pathway to spinel formation. Suppression of the latter induces the reversible behavior in an LDH that otherwise decomposes irreversibly to the spinel.  相似文献   

10.
A thin alumina‐hydrotalcite (Al‐HT) film was fabricated from the synthesized boehmite and HT sol samples. The sols were a Newtonian fluid within 12 h of the sol synthesis and pseudo‐plastic flow thereon. Co‐precipitated HT demonstrated poorly crystallized periclase and spinel structures and apparent doublet peak of hydrotalcite at 2θ = 39–44°, indicative of a disordered structure. The heated Al‐HT sample demonstrated highly amorphous structure with single hydrotalcite peak but barely observed γ‐alumina and γ‐boehmite phases. The exfoliation of the spinel, gibbsite and periclase in the Al‐HT was caused by the intercalation of boehmite into the HT layers that impeded the formation of the oxides phases. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
通过磁控溅射并引入钛保护层, 利用在0.3 mol·L-1硫酸中20 V电压下二次阳极氧化, 在氧化铟锡(ITO)导电玻璃衬底上直接制备了超薄(约140 nm, 为阳极氧化前Al厚度的一半)、大面积(约4 cm2)的多孔阳极氧化铝(AAO). 扫描电子显微镜结果表明生成的微孔与衬底垂直, 孔径和孔间距分别约为30和60 nm. 我们发现钛保护层的作用是提高了Al层的附着性并且防止ITO被腐蚀, 在此体系中钛不能被其它的金属如铬、金、银或铜代替. 紫外-可见光谱透过率结果显示在阳极氧化过程中Ti被氧化成为透明的TiO2, 利用10-20 nm的钛保护层以及二次阳极氧化过程, 能够保证高透明度. 在ITO上直接制备的这种透明、有序的AAO纳米结构在光子学、光伏领域和纳米制备等方面具有潜在应用.  相似文献   

12.
The present paper reports on the separation of a mixture of fluorescein isothiocyanate-labeled angiotensin I and II peptides in a shear-driven nanochannel with a C18-coating and using an eluent consisting of 5% acetonitrile in 0.02 M aqueous phosphate buffer at pH 6.5. The flat-rectangular nanochannel in fused silica consisted of an etched structure in combination with a flat moving wall. The very fast separation kinetics that can be achieved in a nanochannel allowed to separate the angiotensin peptides in less then 0.2 s in a distance of only 1.8 mm. Plate heights as small as 0.4 microm were calculated after substraction of the injection effect.  相似文献   

13.
Through direct nanoparticle nucleation and growth on nitrogen doped, reduced graphene oxide sheets and cation substitution of spinel Co(3)O(4) nanoparticles, a manganese-cobalt spinel MnCo(2)O(4)/graphene hybrid was developed as a highly efficient electrocatalyst for oxygen reduction reaction (ORR) in alkaline conditions. Electrochemical and X-ray near-edge structure (XANES) investigations revealed that the nucleation and growth method for forming inorganic-nanocarbon hybrids results in covalent coupling between spinel oxide nanoparticles and N-doped reduced graphene oxide (N-rmGO) sheets. Carbon K-edge and nitrogen K-edge XANES showed strongly perturbed C-O and C-N bonding in the N-rmGO sheet, suggesting the formation of C-O-metal and C-N-metal bonds between N-doped graphene oxide and spinel oxide nanoparticles. Co L-edge and Mn L-edge XANES suggested substitution of Co(3+) sites by Mn(3+), which increased the activity of the catalytic sites in the hybrid materials, further boosting the ORR activity compared with the pure cobalt oxide hybrid. The covalently bonded hybrid afforded much greater activity and durability than the physical mixture of nanoparticles and carbon materials including N-rmGO. At the same mass loading, the MnCo(2)O(4)/N-graphene hybrid can outperform Pt/C in ORR current density at medium overpotentials with stability superior to Pt/C in alkaline solutions.  相似文献   

14.
Piroxicam and meloxicam nanocomposites with alumina were synthesized by mechanochemical treatment of medicinal substances mixed with the oxide. X-ray photoelectron spectroscopy demonstrated that interaction of the components during mechanical activation proceeds via binding the amide and sulfate groups in the molecules of medicinal substances with the active sites of alumina surface. XPS studies confirmed the formation of “core-shell” composites with the shell represented by medicinal substances distributed over the support surface.  相似文献   

15.
A study by thermo-gravimetry of the kinetics of oxidation of the alloy Fe-22Cr-4Al was carried out at 1100°C in ambient air, for durations up to 25 hours. The morphology of oxide scales formed at high temperature and the structure of oxide films were then observed and analyzed by scanning electron microscopy. The kinetic study, performed by thermo-gravimetry, showed the existence of two stages, of which only the second corresponds to a parabolic law, with the formation of a protective coating of αalumina. The presence in the alloy of foreign elements, added or not, led to the formation of precipitates whose distribution and number were studied by the analysis of metallographic images of surfaces. The influence of a preliminary cold work before oxidation was examined. The results showed that this mechanical treatment has no influence on the nature of the precipitates, but modifies their size. It comes out from this study that the nucleation and growth of these precipitates enter in competition with the formation of the layer of alumina, by accelerating the total oxidation rate during the first stage, and modify the morphology and the adherence of the formed alumina layer. The precipitates obtained at the interface have morphologies such that the internal stresses could then be modified considerably in terms of intensities and of distribution ; their relaxation would cause the warped state of the samples observed after oxidation.  相似文献   

16.
Lee S  Park M  Park HS  Kim Y  Cho S  Cho JH  Park J  Hwang W 《Lab on a chip》2011,11(6):1049-1053
Nanochannel membranes have been fabricated for many biological and engineering applications. However, due to low-throughput process, high cost, unsuitable pore geometries, and low chemical/mechanical stability, we could not have obtained optimized nanochannel membranes for biomedical treatments as well as a novel building block for artificial cell membranes. Here, we report a PEO-functionalized straight nanochannel array based on a self-organized porous alumina for a novel biofilter with antifouling, superior immunoprotection and high permeability of nutrients, which have excellent in vivo mechanical stability. Thus, our strategy may provide great advantages in novel membrane biotechnologies such as biofiltration, artificial cells, and drug delivery.  相似文献   

17.
Three-dimensional nanocomposites based on ordered opal matrices (OMs) and metal nanoparticles were prepared by the reduction of salts and oxides of iron subgroup metals (M = Ni, Co, and Fe) and their binary and ternary mixtures with isopropanol in a supercritical state. The effect of the composition of the initial salts (nitrates or chlorides) on the phase composition of OM/M composites was determined. For a binary system of Ni and Co nitrates (1 : 1), the particles of a NiCo solid solution in a cubic modification were formed in an opal matrix after treatment in supercritical isopropanol. For the Ni-Fe and Co-Fe systems, the nanoparticles of solid solutions based on nickel or ??-, ??-cobalt metal and also oxides or an MFe2O4 phase with the spinel structure were formed in opal matrices with the use of iron trichloride. The nanoparticles of iron metal and Ni3Fe, NiFe, and CoFe intermetallic compounds with regular distributions of metal atoms were detected for the first time in addition to spinel phases upon the reduction of composites with Fe, Ni-Fe, and Co-Fe nitrates with supercritical isopropanol. The reduction of composites obtained by the thermal treatment of a ternary mixture of nickel and cobalt nitrates and iron chloride in supercritical isopropanol led to the formation of solid solution nanoparticles based on Ni, Co, and Fe with an fcc structure and an oxide phase with the spinel structure in the voids of opal matrices. In the composite based on an opal matrix and a ternary system of Ni-Co-Fe nitrates (1 : 1 : 1), the complete reduction of spinel phases to the intermetallic phases of Ni3Fe, NiFe, and CoFe was noted.  相似文献   

18.
An alloy of Cu–9at.%Al(111) has been oxidized in a low‐energy electron diffraction (LEED)/AES and a scanning AES instrument at elevated temperatures. Dosing with 1300 L of oxygen at 995 K gives rise to well‐ordered oxide layer formation on the Cu–9at.%Al alloy. The structure of the ordered oxide confirmed by LEED is ( ) R30°. The chemical state of the oxide was Al2O3. The morphology of the surface observed with SEM in the scanning AES instrument revealed flat oxide growth with triangular defects of the same orientation. The possible epitaxy between the alloy substrate and alumina layer has been discussed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
Extended X-ray absorption fine structure and X-ray absorption near-edge structure techniques were used to study in detail the structural characteristics of FeCo-Al2O3 nanocomposite xerogels and aerogels. The formation of bcc FeCo alloy, which cannot be assessed unambiguously by X-ray diffraction, dispersed within the alumina matrix was evidenced in the final samples obtained by heat treatment at 800 degrees C in reducing atmosphere. Aerogel samples reduced below 800 degrees C still present a fraction of oxidized metal together with the bcc alloy. The investigation of the xerogels and aerogels calcined at increasing temperature indicates that Fe(III) and Co(II) ions are present and they are located in the tetrahedral sites of the spinel structure of the matrix (gamma-Al2O3); moreover, the precursor of the spinel is more ordered in the aerogel sample than the xerogel sample.  相似文献   

20.
A scalable technique for making silica coatings with embedded two-dimensional arrays of iron oxide nanoparticles is presented. The iron oxide nanoparticle arrays were formed by depositing quasi-crystalline ferritin layers, an iron storage protein with an iron oxide mineral core, on solid substrates by a spread-coating technique based on evaporation-induced convective assembly. The layer of protein molecular arrays was then encapsulated in a silica matrix film deposited from a sol precursor. The organic protein shell of the ferritin molecules was then removed by controlled pyrolysis, leaving ordered iron oxide cores bound in the silica matrix. This article is the first report on combining convective self-assembly of proteins with sol-gel techniques of oxide film formation. The technique is technologically feasible and scalable to make coatings of encapsulated ordered magnetic clusters tens of cm(2) or larger in size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号