首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Standard thermoluminescent (TL) detectors, owing to their relatively large thickness, may seriously underestimate personal skin doses which are defined at the depth of 7 mg cm−2. New TL ultra-thin, LiF:Mg,Cu,P-based detectors have been developed at the Institute of Nuclear Physics to fulfill simultaneously the requirements of flat energy response for beta rays and the ability to measure low beta ray doses. In our detectors a thin layer of MCP phosphor is bonded with a thick base of undoped LiF. We assess the effective thickness of this detector to be 8.5 mg cm−2. Tests of these detectors exposed with and without covering foil to 147Pm, 204Tl and 90Sr/90Y calibrated beta fields indicate that our detectors feature an essentially flat energy response and good angular characteristics. The sensitivity of our detectors permits doses in the microsievert range to be measured reliably.  相似文献   

2.
3.
4.
5.
6.
The thermoluminescent (TLD) method is one of the most commonly used in dose measurements in radiation protection dosimetry. Due to its many advantages this method is widely spread. However, TLD has especially one disadvantage which is very inconvenient: the dose information in already read detectors is erased and in routine standard way the dose can not be reassessed. The positive is that this shortcoming can be eliminated by applying UV radiation. After first readout the same detector can be subjected to UV exposure and then read once again to reassess the dose.This method for reassessment of dose is based on phototransferred thermoluminescence (PTTL). In an irradiated TL detector deep traps are not emptied during the first readout. During exposure to UV, electrons are transferred from deep traps to shallower dosimetric traps. This TL signal emerging during the second readout following UV illumination is called phototransferred thermoluminescence.A method for reassessment of dose in a previously readout TLD is presented in this work. Experiments show that the method works well within region of doses between 5 and 50 mGy, but could be applied for higher doses as well. The efficiency of dose reassessment reaches about 17 percent of the first readout.The method could be a noticeable improvement in TLD dosimetry, giving more opportunities for better control and reliability of measurements.  相似文献   

7.
Well known, widely applied high sensitive thermoluminescence (TL) detector LiF:Mg,Cu,P (MCP-N) was investigated. This paper analyses changes of the TL emission spectrum of MCP-N after irradiation with ultra high doses (up to 500 kGy). Spectral dependence of TL on dose is very complex especially in the region of very high doses (>1 kGy). As a general trend we found that the number of peaks increases with dose in the long-wavelength region indicating new types of recombination centres (RCs). Wavelength peak positions for increasing doses are quite stable. Only some of them show slight red-shift.  相似文献   

8.
LiF:Mg,Cu,P detectors produced at the Institute of Nuclear Physics in Krakow have shown very good dosimetric characteristics. Understanding of the effect of the concentration and type of dopants is important in the characterization of TL materials. The aim of work was to investigate the influence of the type and concentration of the dopants on the photon energy response of these detectors by irradiations “in air” and on the ISO water phantom in the range of mean photon energies between 33 and 164 keV. The influence of dopants on the glow curves, sensitivity and reproducibility was also examined. Results showed that measured energy dependence values are lower compared to the theoretical values both “in air” and on phantom. The type and concentration of the dopants influence the shape of the glow curves and sensitivity while for energy dependence is more important the presence of certain activators, namely copper.  相似文献   

9.
The radio-photoluminescent (RPL) characteristics of LiF:Mg,Ti (MTS) and LiF:Mg,Cu,P (MCP) thermoluminescent detectors, routinely used in radiation protection dosimetry, were investigated after irradiation with ultra-high electron doses ranging up to 1 MGy. The photoluminescence of both types of LiF detectors was stimulated by a blue light (460 nm) and measured within a spectral window around 530 nm. The RPL dose response was found to be linear up to 50 kGy and sublinear in the range of 50 kGy to 1 MGy for MCP detectors and linear up to 3 kGy and next sublinear in the range from 5 kGy to 1 MGy for MTS detectors. For both type of LiF detectors RPL signal is saturated for doses higher than 100 kGy. The observed differences between MCP and MTS may suggest, that the RPL effect in LiF is not entirely governed by intrinsic defects (F2 and F3+ centers), but dopants may also have a significant influence. Due to the non-destructive character of the RPL measurement, it is suggested to apply combined RPL/TL readouts, what should improve accuracy of high-dose dosimetry.  相似文献   

10.
The high-temperature ratio (HTR) is a parameter quantifying changes of the shape of the high-temperature part of the LiF:Mg,Ti glow-curve after exposure to densely ionizing radiation. It was introduced in order to estimate the ‘effective LET’ of an unknown radiation field and to correct the decreased relative TL efficiency for high-Linear Energy Transfer (LET) radiation.In the present work the dependence of HTR on proton energy (14.5–58 MeV) and dose (0.5–30 Gy) was investigated. All measured HTR values were at the level of 1.2 or higher, therefore significantly different from the respective value for gamma-rays (HTR = 1), but HTR was found to be insensitive to changes of proton energy above 20 MeV. As a result the relationship between HTR and relative TL efficiency is not unequivocal. The HTR was found to be dependent on absorbed dose even for the lowest studied doses.  相似文献   

11.
We investigated the thermal degradation of LiF:Mg,Cu,P (NTL-250) and LiF:Mg,Cu,Si (MCS) for the development of TL sheet. By thermogravimetry and differential scanning calorimetry (TG-DSC), the exothermic reaction was observed between 320 °C and 400 °C in MCS as well as NTL-250. The heat value of MCS was twice as large as that of NTL-250. This ratio corresponded with that of Mg amount in these TL materials measured by ICP-OES (inductively-coupled plasma optical emission spectrometry). X-ray diffraction (XRD) measurements were also carried out, and the peaks of MgF2 phase were also observed in degraded MCS sample as well as NTL-250. Moreover, X-ray absorption near-edge structures (XANES) of Cu in these LiF TLDs were measured. The valences of Cu did not change before and after degradation. It indicates that the thermal degradation is caused by not Cu but Mg ion state change. The exothermic reaction is possible caused by the stabilization reactions, and then it was expected to correspond with MgF2 precipitation. From these results, we concluded that the thermal degradations of these LiF TLDs are caused by the precipitation of MgF2.  相似文献   

12.
13.
Nanocrystalline LiF:Mg, Cu, P of rod shape (about 30-40 nm in diameter and 0.3-0.5 μm in length) has been prepared by the chemical co-precipitation method. Thermoluminescence (TL) and dosimetric characteristics of the nanocrystalline phosphor are studied and presented here. The formation of the material was confirmed by the X-ray diffraction (XRD). Its shape and size were also observed by transmission electron microscope (TEM). The TL glow curve of the nanocrystalline powder shows a single peak at 410 K along with four overlapping peaks of lesser intensities at around 570, 609, 638 and 663 K. The observed TL sensitivity of the prepared nanocrystalline powder is less than that of the commercially available “Harshaw TLD-700H hot-pressed chips” at low doses but it still around three times more than that of LiF:Mg, Ti (TLD-100) phosphor. The 410 K peak of the nanomaterial phosphor shows a very linear response with exposures increasing up to very high values (as high as 10 kGy), where all the other thermoluminesent dosimeters (TLD) phosphors show saturation. This linear response over a large span of exposures (0.1 Gy-10 kGy) along with negligible fading and its insensitivity to heating treatments makes the nanocrystalline phosphor useful for its application to estimate high exposures of γ-rays. The ‘tissue equivalence’ property of this material also makes it useful over a wide range of high-energy radiation.  相似文献   

14.
Within a systematic study of a novel system enabling 2D readout of TL foils, the X-ray energy and dose response was investigated in TL foils containing LiF:Mg,Cu,P (MCP-N) or CaSO4:Dy as activators. Foils were exposed to broad X-ray beams of mean energies ranging between 45 keV and 208 keV (ISO 4037 standard), with reference to 662 keV 137Cs gamma rays. The MCP-N foils, of about 380 nm emission wavelength, show a flat X-ray energy response, but low sensitivity. Due to poor TL light detection efficiency of the CCD (charge-coupled device) camera over this range of wavelengths, only doses exceeding 500 mGy can be reliably measured. In the case of CaSO4:Dy foils, their TL light emitted around 450 nm wavelengths is registered by the CCD camera with no loss of efficiency, enabling X-ray doses as low as 100 mGy to be evaluated. Unlike that of MCP-N, the dose response of CaSO4:Dy foils is highly supralinear. Nevertheless, within experimental conditions applied in this study, the 2D-TL technique may be applied to determine Entrance Surface Dose or Maximum Skin Dose in radiology. The more sensitive CaSO4:Dy foils could be used only in a well-specified radiation field (e.g., in mammography) or in qualitative dose mapping.  相似文献   

15.
Erasure of the thermoluminescence (TL) signal on detector readout is considered to be a disadvantage of TL dosimetry, as post-readout dose reassessment is then impossible in principle. A method of dose reassessment based on phototransferred thermoluminescence (PTTL) has been developed at the Institute of Nuclear Physics, Polish Academy of Sciences (IFJ PAN) and applied to MTS-N (LiF:Mg,Ti) detectors. We demonstrate the possibility of applying PTTL for dose reassessment in MTS-N TL detectors routinely applied in the dosimetric service at IFJ PAN. Readings of TL detectors exposed to relatively high doses by the customers of our dosimetry service can now be reassessed using our automatic readers. A major obstacle in applying the PTTL method at lower exposures is the presence of residual dose accumulated in LiF:Mg,Ti detectors after many field exposure and readout cycles. Since most of the TL detectors in our service have been already used for a long time (e.g. for over 10 years in the case of some detector batches), we find that our PTTL method of dose reassessment is possible only in detectors which had received doses exceeding 5 mSv.  相似文献   

16.
This communication describes a new neutron spectrometer consisting of pairs of 7Li and 6Li based thermoluminescent dosemeters (MCP-6, MCP-7) located at selected positions within a single moderating polyethylene sphere. The spatial arrangement of the dosemeters has been designed using the MCNPX Monte Carlo code to calculate the response matrix in order to obtain a nearly isotropic response for neutrons in the energy range up to 20 MeV. A partial validation of the calculated response matrix has been performed with the calibrated 241Am–Be neutron source at the INFN–LNF Laboratory, using the shadow cone technique.  相似文献   

17.
The properties of LiF:Mg,Ti (distributed as, e.g., TLD-100 or MTS-N), the most frequently used thermoluminescent detector, have been optimised for measurements of sparsely ionising radiation (gamma rays), typically encountered in radiation protection or clinical dosimetry. However, these detectors need also to be applied in conditions of mixed-field dosimetry with a high-LET component, such as those encountered in heavy ion beams or in space.

At the Institute of Nuclear Physics in Kraków a new type of LiF:Mg,Ti detector (named MTT) has been recently developed through modification of its dopant composition. This composition is intended to increase the detection efficiency after a dose of high-LET radiation. The concentration of dopants in the MTT material is: CMg=50 ppm, and CTi=120 ppm, i.e. about a three times less of magnesium and about 10 times more of titanium content, compared with the standard MTS-N. The MTT TL detectors feature an increased relative efficiency to high-LET radiation, which for 5 MeV alpha-particles is about twice that of standard LiF:Mg,Ti. The response of MTT detectors has been studied in charged particle beams of the HIMAC accelerator in Chiba, Japan and in Dubna, Russia. The main foreseen application of MTT detectors are dose measurements in space. The dose after high-LET exposure can be estimated from the difference of the response of MTS and MTT detectors. In the near future MTT detectors will be applied in the “Matroshka” experiment. Within this experiment a specially constructed human phantom will be exposed in free space (outside the International Space Station) for 1 year. The phantom will incorporate a few thousand measuring points enabling radiation doses to particular organs to be determined.  相似文献   


18.
High-temperature emission spectra of LiF:Mg,Cu,P (MCP-N) TL detectors, irradiated above the nominal saturation level, up to the hundreds of kGy, have been measured. Emission spectra integrated over the whole temperature range, as well as the spectra recorded at the temperatures corresponding to the TL peaks maxima, were analyzed. With increasing dose of γ-radiation no significant changes were observed in the short wavelength emission range (220–450 nm) of the measured spectra. For doses of 4 kGy and higher the long wavelength emission (450–800 nm) started to be visible. All recorded spectra have been expressed in a form of the sum of several Gaussian-shape bands in the energy domain, which parameters remain in a general agreement with the measurements of Mandowska et al. (2010). Spectra of the low-temperature, main, high-temperature and “B” TL peaks were investigated. In the ranges of the low-temperature and the main dosimetric peaks, that is 100–125 and 210–230 °C, respectively, the short wavelength emission disappeared with increasing dose and for the highest doses the long wavelength emission became dominant. Both the high-temperature (290–320 °C) and the “B” (370–425 °C) peaks emission spectra exhibited somewhat different behavior with increasing dose. Initially, an even growth of the whole spectrum was observed and for doses higher than 16 kGy the intensity of the spectrum decreased, but the short wavelength emission band fell significantly faster, in case of the high-temperature TL peaks. In case of the “B” peak emission spectra the long wavelength emission did not play any role in the analyzed dose range. The spectra measured at the TL peaks maxima were also fitted with several Gaussian-shape bands. Dose-intensity dependences for all Gaussian-shape bands fitted to the measured spectra are also included in this paper.  相似文献   

19.
Abstract

ITC measurements, optical absorption spectra in the wavenumber range 5.4 × 104?200 cm?1, microspectrophotometry, photoluminescence spectra, optical and electron microscopy and X-ray diffraction have been used to study the growth and the nature of a new phase occlusions in LiF: Ti3+ and LiF: Mg2+, Ti3+. They grow along the 100 direction as a consequence of high temperature heat treatments in moist atmosphere.  相似文献   

20.
In this study, electronic structure of lithium fluoride thin films in pure state and doped with magnesium (Mg), copper (Cu) and phosphorus (P) impurities was studied using WIEN2K Code. The structural and electronic properties of two LiF thin films with 1.61 and 4.05?nm thicknesses were studied and compared. Results show that the distance of atoms in the surface and central layers of pure LiF are 1.975 and 2.03?nm, respectively. Electronic density of the valence band around the surface atoms is greater than that around middle atoms of the supercell. The band gap of bulk LiF is 9?eV. But, in the case of thin films, it is reduced to 2?eV. Electronic and hole-traps were not observed in composition of LiF thin films doped with Mg and P with 1.61 and 4.05?nm thickness and in fact, metallic properties were observed. When Cu atoms were doped in composition of an LiF thin film, the thin film was converted to semiconductor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号