首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Near-infrared excited up-conversion phosphors of RE3+/Yb3+(RE = Ho, Tm) co-doped SrIn2O4 were synthesized by a solid-state reaction method. X-ray diffraction analysis revealed the phase composition of those samples, and the up-conversion spectroscopic properties were studied in terms of up-conversion emission spectra. Under 980 nm near-infrared laser excitation, strong green emission with the peak at 546 nm was observed in SrIn2O4: Ho3+/Yb3+, which can be assigned to the characteristic 5S2(5F4)  5I8 transition of Ho3+. Furthermore, SrIn2O4: Tm3+/Yb3+ showed bright blue emission with the peak at 486 nm, which is associated with the 1G4  3H6 transition of Tm3+. The UC power studies indicated that the luminescence of SrIn2O4: Ho3+/Yb3+ and SrIn2O4: Tm3+/Yb3+ are attributed to two-photon and three-photon process, respectively. The possible UC luminescence mechanism and energy transfer in SrIn2O4: RE3+/Yb3+ were discussed.  相似文献   

2.
The YAG nanopowders were prepared by a co-precipitation method using nitrate and ammonium hydrogen carbonate as raw materials. To obtain homogenous precipitate, reverse-strike (adding salt solutions to the precipitant solution) technique was adopted. Therefore, single (Tm3+) and codoped (Tm3+–Yb3+) YAG nanopowders with a size between 40–90 nm have been obtained.Blue upconversion emission at around 480 nm has been found in YAG: Tm3+ nanopowders under excitation to the 3H4 level of Tm3+ at around 800 nm. However, this upconversion emission in nanopowders codoped with Tm3+–Yb3+ ions is increased by a factor of about 10. The analysis of the temporal evolution of the involved levels and the dependence of the upconversion intensity on the pump power at 800 nm allowed to distinguish the upconversion mechanism. In YAG: Tm3+ nanopowders the upconversion mechanism is due to excited state absorption processes. However, in the codoped samples, Yb3+ ions acts as the sensitizers; in consequence, the blue upconversion is strongly increased.  相似文献   

3.
Near-infrared emitting phosphors LaOCl:Nd3+/Yb3+ were prepared by the solid-state method, and their structures and luminescent properties were investigated by using X-ray diffraction and photoluminescence analysis, respectively. The studies shows that tetragonal LaOCl:Nd3+/Yb3+ can be synthesized by the solid-state reaction at 600 °C for 3 h. Upon 353 nm UV excitation, LaOCl:Nd3+/Yb3+ sample shows strong near-infrared emission lines in the region of 1060–1150 nm (corresponding to 4F3/2  4IJ transition of Nd3+, J = 9/2, 11/2, 13/2, 15/2) and 980–1050 nm (corresponding to 2F5/2  2F7/2 transition of Yb3+). The decreasing emission intensity of Nd3+ with increasing doping concentration of Yb3+ proved the energy transfer in LaOCl:Nd3+/Yb3+. The possible near-infrared emission and energy transfer mechanism between Nd3+ and Yb3+, as well as the energy transfer efficiency of LaOCl:Nd3+/Yb3+ were discussed.  相似文献   

4.
An analysis of the intense blue upconversion emission at 476 and 488 nm in Tm3 +/Yb3 + codoped Y2O3 under excitation power density of 86.7 W/cm2 available from a diode laser emitting at 976 nm, has been undertaken. Fluorescence intensity ratio (FIR) variation of temperature-sensitive blue upconversion emission at 476 and 488 nm in this material was recorded in the temperature range from 303 to 753 K. The maximum sensitivity derived from the FIR technique of the blue upconversion emission is approximately 0.0035 K? 1. The results imply that Tm3 +/Yb3 + codoped Y2O3 is a potential candidate for the optical temperature sensor.  相似文献   

5.
The effect of Yb3 + concentration on the fluorescence of 12 CaO·7 Al2O3:Tm3 +/Yb3 + polycrystals is investigated. Under the excitation of 980 nm laser, the strong blue (477 nm) emission band is observed and attributed to 1G4  3H6 of Tm3 +. The ratio of blue to red emission increases with the increasing of Yb3 + and remains constant at 10 mol% Yb3 +. The pump dependence and upconversion mechanisms show that the two-photon cooperative upconversion process is responsible for the enhancement of the blue upconversion emission. The Commission Internationale de l'eclairage chromaticity coordinates (x, y) illustrate that the 12 CaO·7 Al2O3:1 mol% Tm3 +/10 mol% Yb3 + can emit high-purity blue light.  相似文献   

6.
This work reports the upconversion luminescence properties of Tm3+/Yb3+ ions in lead tungstate tellurite (LTT) glasses. Judd–Oflet intensity parameters have been obtained from the absorption band intensities of Tm3+ singly-doped and Tm3+/Yb3+ co-doped LTT glasses. The spontaneous emission probabilities, radiative lifetimes and branching ratios for 1G4 and 3H4 emission levels of Tm3+ have been determined. Upconversion luminescence has been observed by exciting the samples at 980 nm (Yb3+:2F7/22F5/2) at room temperature. Four upconversion emission bands corresponding to the 1G43H6 (477 nm), 1G43F4 (651 nm), 1G43H5 (702 nm) and 3H43H6 (810 nm) transitions have been identified. The relative variation in the intensities of upconversion bands, the different channels responsible for upconversion spectra and the effect of Yb3+ ions concentration on the upconversion luminescence of Tm3+ ions have also been discussed.  相似文献   

7.
Yb3+/Er3+ co-doped Gd6MoO12 and Yb3+/Er3+/Li+ tri-doped Gd6MoO12 phosphors were prepared by adjusting the annealing temperature via the high temperature solid-state method. Under the excitation of 980 nm semiconductor, the upconversion luminescence properties were investigated and discussed. In the experimental process, we get the optimum Yb3+ concentration and the concentration quench effect will happen while the concentration extends the given region. According to the Yb3+ concentration quenching effects, the critical distance between Yb3+ ions had been calculated. The measured UC luminescence exhibited a strong red emission near 660 nm and green emission at 530 nm and 550 nm, which are due to the transitions of Er3+(4F9/2, 2H11/2, 4S3/2)  Er3+(4I15/2). Then the effect of excitation power density in different regions on the upconversion mechanisms was investigated and the calculated results demonstrate that the green and red upconversion is a two-photon process. A possible mechanism was discussed. After Li+ ions mixing, the upconversion emission enhanced largely, and the optimum Li+ concentration was obtained while fixed the Yb3+ and Er3+ on the above optimum concentration. This enhancement owns to the decrease of the local symmetry around Er3+ after Li+ ions doping into the system. This result indicates that Li+ is a promising candidate for improving luminescence in some case.  相似文献   

8.
共沉淀法制备NaYF4 : Tm3+,Yb3+的上转换发光   总被引:4,自引:3,他引:1       下载免费PDF全文
通过共沉淀法制备Tm3+和Yb3+掺杂的NaYF4上转换发光材料。其中Tm3+和Yb3+的摩尔分数分别为0.01%,0.1%。在室温下测试了NaYF4 : Tm3+,Yb3+材料在300~1 100 nm的吸收光谱。利用X射线衍射(XRD),扫描电镜(SEM)测试了合成材料的物相结构和微观形貌。结果表明:NaYF4 : Tm3+,Yb3+材料为六方相晶体,其颗粒大小约为50~60 nm,产物结晶良好,含有少量杂相。在798 nm近红外光激发下,测试了样品的上转换发光光谱。观察到了蓝、绿色上转换发光。讨论了上转换发光的可能机理,蓝光主要来源于Tm3+的激发态1G4到基态3H6的跃迁,绿光来源于Tm3+1D23H5跃迁。  相似文献   

9.
NaYF4 microcrystals co-doped with Ho3+ and Yb3+ were prepared by a facile hydrothermal synthesis. The products were characterized by X-ray diffractometer, scanning electron microscopy, and photoluminescence spectroscopy. Upon excitation with a 980 nm laser diode, the sample shows an intense green upconversion emission centered at 540 nm corresponding to the 5S25I8 transition of Ho3+. The quadratic dependence of the green emission intensity on the excitation power reveals a two-phonon upconversion process. On the contrary, upon excitation with 448 nm, both visible and near-infrared emissions peaked at 483, 540, 644, 749, and 978 nm are simultaneously observed, which could be assigned to the electronic transitions of Ho3+: 5F35I8, 5S25I8, 5F55I8, 5S25I7, and Yb3+: 2F5/22F7/2, respectively. The energy transfer processes between Ho3+ and Yb3+ ions and the involved mechanisms have been investigated and discussed.  相似文献   

10.
For biological application, lanthanide ion doped upconverting nanocrystals should be modified to be biocompatible. Here, we show a viable and efficient procedure for producing biocompatible NaYF4:Yb3+,Er3+ upconverting nanocrystals. The uniform NaYF4:Yb,Er upconverting nanocrystals were firstly synthesized by a mild chemical procedure, which were subsequently coated with a layer of polyethylene-glycol (PEG) to be biocompatible. The photoluminescent intensity of the PEG coated NaYF4:Yb,Er nanocrystals varies nonlinearly with increasing the thickness of the PEG coating. In particular, it was noted that the Intensity Ratio of Red to Green Emission (IRRGE) of PEG coated NaYF4:Yb,Er was highly depended on the excitation power density: IRRGE keeping almost constant with increasing the excitation power density below 826 W/cm2, but remarkably increasing when increasing the excitation power density above 826 W/cm2. For this unique phenomenon, the excitation and emission mechanisms related to PEG coating were discussed.  相似文献   

11.
Up-conversion phosphors BaLa2ZnO5 co-doped with Ho3+/Yb3+ were synthesized by high temperature solid-state reaction method. The phase composition of the phosphors was characterized by X-ray diffraction (XRD). The structure of BaLa2ZnO5: 0.75% Ho/15% Yb phosphor was refined by the Rietveld method and results showed the decreased unit cell parameters and cell volume after doping Ho3+ and Yb3+, indicating Ho3+ and Yb3+ have successfully replaced La3+. Under the excitation of 980 nm diode laser, the strong green and weak red up-conversion emissions centered at 548 nm, 664 nm and 758 nm were observed, which originating from 5S2, 5F25I8, 5F45I8 and 5S2, 5F25I7 transitions of Ho3+ ions, respectively. The optimum doping concentrations of Ho3+ and Yb3+ were determined to be 0.75% and 15%, and the corresponding Commission International de L'Eclairage (CIE) coordinates are calculated to be x=0.298 and y=0.692. The related UC mechanism of Ho3+/Yb3+ co-doped BaLa2ZnO5 depending on pump power was studied in detail. The results indicate that BaLa2ZnO5: Ho3+/Yb3+ can be an effective candidate for up-conversion yellowish-green light emitter.  相似文献   

12.
The Y2O3:R(R = Yb3+, Er3+, Tm3+) nanophosphors were synthesized by a solvothermal method and the temperature dependence of the white upconversion emission was studied using a 975 nm LD. The upconversion emission spectra in 1 mol% Er3+/5 mol% Yb3+/xTm3+ tri-doped Y2O3 nanophosphors were sintered at 1000 °C with x from 0 to 0.5 mol%. The blue emission intensity increases increasing Tm3+ concentration from 0 to 0.5 mol%, because the Tm3+ state can be easily reached due to the 2F7/2 → 2F5/2 transition of Yb3+ near 10,000 cm−1. The Y2O3: Er3+/Yb3+/Tm3+ nanophosphors exhibit upconversion emission from white to green with increasing sintering temperature. The calculated CIE coordinates are located in the white region at a pump power of 700 mW at 1000 °C, and the color coordinates were very similar to the standard white light emission. Their upconversion process was described through energy level diagrams and results of upconversion emission spectra and pump power dependence.  相似文献   

13.
NaYF4:Yb3+,Tm3+ nanorods are prepared with hydrothermal method. The upconversion luminescent properties are investigated under dual excitation of 980 nm and 808 nm. The blue emission is observed at about 475 nm under dual excitation. The intensity is 2.6 times higher than the total intensity of the two corresponding single wavelength excitations, showing a synergistic upconversion effect occurring there. The dual wavelength excitation not only effectively decreases non-radiative relaxation pumped by 980 nm but also reduces the rate of the back energy transfer from Tm3+ to Yb3+ pumped by 808 nm. The result provides a possible new way to further improve the upconversion efficiency of rare earth doped phosphor.  相似文献   

14.
An improved nonclosed hydrothermal synthetic processing is used to synthesize Tm3+ and Nd3+ doped β-NaYbF4 nanophosphors at 85°C in the air without any high-temperature and high-pressure treatments as a final step. The particles have average crystallite size around 40 nm as obtained by TEM and calculation in terms of the XRD data. Intense 475 nm blue upconversion emission originated from the 1G43H6 transition of Tm3+ is observed under 808 nm excitation, and its intensity can be enhanced onefold by introducing Nd3+ ion. The dominant populating mechanisms for the β-NaYbF4:Tm3+ and β-NaYbF4:Tm3+/Nd3+ are thought as Tm3+→Yb3+→Tm3+ and Nd3+→Yb3+→Tm3+ energy transfer processes, respectively. The concentration quenching processes for blue and red emissions are discussed.  相似文献   

15.
Desvitrification in a Tm3+ and Yb3+ codoped oxyfluoride glass has been obtained by exciting with a continuous Argon laser radiation increasing the average laser power from 144 to 2900 mW. Excitation spectra inside a locally damaged zone in a 1 mol% Tm3+ and 2.5 mol% Yb3+ codoped glass have been measured under excitation in the wavelength range 750–830 nm detecting the 2F5/2 (Yb3+) level. This curve is the result of the contribution of two different kinds of centers, the fluoride nanocrystals and the glassy phase of the glass ceramic sample created due to the irradiation. The weight of the contributions of each of the centers depends on the excitation wavelength, and from the analysis of the decay of the luminescence it can be concluded that approximately 80% of the Tm3+ ions are located in the nanocrystals and therefore less than 20% in the glassy phase.  相似文献   

16.
以EDTA为络合剂,用水热法合成了Er3+,Tm3+和Yb3+共掺杂的NaYF4纳米晶。XRD和TEM的结果表明:粒径约为30 nm,属于六方晶系。在980 nm半导体激光器激发下,研究了不同Er3+离子掺杂浓度对Tm3+和Er3+离子上转换发光性能的影响,光强与泵浦功率的双对数曲线表明,474,525,539,650 nm的发射均属于双光子过程,408 nm的发射属于三光子过程。讨论了样品的协作敏化和声子辅助共振能量传递的上转换发光机制。  相似文献   

17.
Up-conversion (UC) is a photoluminescence process which converts few low energy photons to a higher energy photon. This process has more potential usages in many different fields like bioimaging, solar spectrum tuning, and security encoding. Nowadays, researches about UC mostly focusing on biomedical signory and synthesis of nanoparticles. The synthesis of NaYF4 nanoparticles executed under series of pH value condition results in different morphology and photoluminescence effect. Samples in low pH value created better consequent and quality than the specimen which had higher pH value. In addition, we observed NaYF4 samples of doping Li+, realizing that the action of distorting in the local symmetry around rare-earth ions is caused by Li+ doping. The NaYF4 microparticles which doped higher concentration of Li+ has strong fluorescence properties and intensities compared with their corresponding group of Li+-free, the blue emission 479 nm luminescence intensities and 454 nm luminescence intensities in NaYF4:Yb3+, Tm3+ microparticles doped 20 mol% Li+ are enhanced 3 and 8 times, separately. And violet emission luminescence intensities around 345 and 360 nm are about 10 and 7 times, respectively. The result indicated that the improved UC luminescence of NaYF4:Yb3+. Tm3+ microparticles with Li+ doping have potentially applications.  相似文献   

18.
Ke Li  Changyu Shen 《Optik》2012,123(7):621-623
Nano-YAG:Ce3+ and YAG:Ce3+,Gd3+ phosphors were synthesized by glycothermal method. The X-ray diffraction (XRD) measurements showed that the samples can be well-crystallized at 600 °C. The transition electron microscope (TEM) showed that the particles have sizes mostly in the range between 35 and 100 nm. The YAG:Ce nano-phosphor had a wide emission band ranging from blue to yellow peaking at 532 nm, due to the transition from the lowest 5d band to 2F7/2, 2F5/2 states of the Ce3+ ion. Red-shift of emission peak wavelength from 532 nm to 568 nm has been achieved as doping Gd3+ ions into the YAG:Ce3+ to substitute some Y3+ ions. White LEDs were fabricated by combining GaN (460 nm) chip with the YAG:Ce3+ and YAG:Ce3+,Gd3+. Color rendering index of the white LED as a function of the ratios of theses two kinds of phosphors was studied. As the ratio of YAG:Ce3+,Gd3+ phosphor increased, the color rendering index of the LED improved significantly under the forward bias of 20 mA. As the ratio of YAG:Ce3+ and YAG:Ce3+,Gd3+ was 11:9, the white LED had a color rendering index, CIE chromaticity coordinates and color temperature Tc of 85, (0.3116, 0.3202) and 6564 K, respectively.  相似文献   

19.
Ce3+, Tb3+ codoped amorphous calcium silicate phosphor was prepared by heating (830 °C for 30 min) Ce3+, Tb3+ codoped calcium silicate hydrate phosphor formed by liquid-phase reaction. The excitation peak wavelength of the resulting phosphor was 330 nm and the emission peak wavelengths were at 544 nm, attributed to the 5D47F5 transition of Tb3+, and at 430–470 mm, attributed to Ce3+. The intensity ratio of the two peaks could be freely controlled by varying the Tb/Ca atomic ratio of the Ce3+, Tb3+ codoped amorphous calcium silicate phosphor, allowing light to be emitted over a wide range from blue to green. It was clarified that energy transfer exists from Ce3+ to Tb3+.  相似文献   

20.
NaYF4:Yb3+, Er3+ nanoparticles were successfully prepared by a polyol process using diethyleneglycol (DEG) as solvent. After being functionalized with SiO2–NH2 layer, these NaYF4:Yb3+, Er3+ nanoparticles can conjugate with activated avidin molecules (activated by the oxidation of the oligosaccharide chain). The as-formed NaYF4:Yb3+, Er3+ nanoparticles, NaYF4:Yb3+, Er3+ nanoparticles functionalized with amino groups, avidin conjugated amino-functionalized NaYF4:Yb3+, Er3+ nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), Fourier transform infrared (FT-IR), UV/Vis absorption spectra, and up-conversion luminescence spectra, respectively. The biofunctionalization of the NaYF4:Yb3+, Er3+ nanoparticles has less effect on their luminescence properties, i.e., they still show the up-conversion emission (from Er3+, with 4S3/2 → 4I15/2 at ~540 nm and 4F9/2 → 4I15/2 at ~653 nm), indicative of the great potential for these NaYF4:Yb3+, Er3+ nanoparticles to be used as fluorescence probes for biological system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号