首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of organoaluminum compounds containing O,C,O or N,C,N chelating (so called pincer) ligands [2,6-(YCH2)2C6H3]AliBu2 (Y = MeO 1, tBuO 2, Me2N 3) with R3SnOH (R = Ph or Me) gives tetraorganotin complexes [2,6-(YCH2)2C6H3]SnR3 (Y = MeO, R = Ph 4, Y = MeO, R = Me 5; Y = tBuO, R = Ph 6, Y = tBuO, R = Me 7; Y = Me2N, R = Ph 8, Y = Me2N, R = Me 9) as the result of migration of O,C,O or N,C,N pincer ligands from aluminum to tin atom. Reaction of 1 and 2 with (nBu3Sn)2O proceeded in similar fashion resulting in 10 and 11 ([2,6-(YCH2)2C6H3]SnnBu3, Y = MeO 10; Y = tBuO 11) in mixture with nBu3SniBu. The reaction 1 and 3 with 2 equiv. of Ph3SiOH followed another reaction path and ([2,6-(YCH2)2C6H3]Al(OSiPh3)2, Y = MeO 12, Me2N 13) were observed as the products of alkane elimination. The organotin derivatives 411 were characterized by the help of elemental analysis, ESI-MS technique, 1H, 13C, 119Sn NMR spectroscopy and in the case 6 and 8 by single crystal X-ray diffraction (XRD). Compounds 12 and 13 were identified using elemental analysis,1H, 13C, 29Si NMR and IR spectroscopy.  相似文献   

2.
Hypercoordinated diorganotin(IV) dichloride, [2-(Et2NCH2)C6H4]2SnCl2 (1), was prepared by reacting [2-(Et2NCH2)C6H4]Li with SnCl4. Halide-exchange reactions between 1 and the appropriate potassium halides gave [2-(Et2NCH2)C6H4]2SnX2 [X = F (2), Br (3), I (4)]. Reaction of 1 with excess of Na2S gave the cyclo-[{2-(Et2NCH2)C6H4}2SnS]2 (5). The solution behavior of the title compounds in solution was investigated by multinuclear (1H, 13C, 19F and 119Sn) NMR spectroscopy, including variable temperature studies. Single-crystal X-ray diffraction analysis revealed for all compounds intramolecular N  Sn coordination thus resulting in distorted octahedral (C,N)2SnX2 configurations. Planar chirality is observed as result of the non-planarity of the SnC3N rings; all compounds, however, crystallizing as racemates. The isomers are linked by extensive hydrogen bonds to give different supramolecular architectures in the crystals of compounds 1, 3 and 4.  相似文献   

3.
《Solid State Sciences》2007,9(11):1012-1019
Two novel inorganic–organic hybrid compounds composed of Keggin tungstocobaltate framework and cobalt(II)–N coordination complexes, K[Co(phen)2(H2O)]2[HCoW12O40]·2H2O (1) (phen = 1,10-phenanthroline) and [Co(2,2′-bipy)3]1.5{[Co(2,2′-bipy)2(H2O)][HCoW12O40]·0.5H2O (2) (bipy = bipyridine), have been synthesized under hydrothermal conditions by directly using Keggin POMs as starting materials, which were characterized by elemental analyses, IR, TG analyses and X-ray single crystal diffraction. Crystal data for compound 1: C48H41Co3KN8O44W12, triclinic, space group P-1, a = 10.918(5) Å, b = 13.401(5) Å, c = 13.693(5) Å, α = 69.291(5)°, β = 71.568(5)°, γ = 78.421(5)°, V = 1768.9(12) Å3, Z = 1; for compound 2: C130H104Co7N26O83W24, orthorhombic, space group, C2/c, a = 46.839(9) Å, b = 14.347(3) Å, c = 26.147(5) Å, α = β = γ = 90°, V = 17,570(6) Å3, Z = 4. Compound 1 exhibits a pseudo-1D chainlike structure, in which potassium ions act as linkages of Keggin unit doubly grafted by [Co(phen)2(H2O)] complex. Compound 2 represents a [Co(2,2′-bipy)2(H2O)]2+ mono-grafted Keggin tungstocobaltate derivative with 1.5[Co(2,2′-bipy)3]2+ countercations. The cyclic voltammetric behavior of 1-CPE is similar to the parent 3-CPE, but the cyclic voltammetric behavior of CoII shows a little difference. Variable-temperature magnetic susceptibility measurement of compound 1 demonstrates the presence of antiferromagnetic interactions.  相似文献   

4.
《Polyhedron》2007,26(9-11):1917-1922
The paramagnetic salts (NH3But)1 and [K(NH2But)2]1, where 1 is the 3-oxyl-4,4,5,5-tetramethyl-2-oxoimidazolidin-1-olate anion, were isolated for the first time in the individual state. The crystal structure of [K(NH2But)2]1 involves polymer chains formed by hydrogen bonding between anions 1 and [K2(NH2But)4]2+ cation dimer fragments. The magnetic properties of [K(NH2But)2]1 are well described by the quasi-isolated dimer model with spins S = 1/2 coupled by weak exchange interactions via [K2(NH2But)4]2 fragments in polymer chains.  相似文献   

5.
A new molybdenum complex (C4H12N2)2[(MoV2O4)(MoVIO4)(C2O4)2]·2H2O, was solvothermally synthesized and characterized by single-crystal X-ray diffraction. The structure of the compound consists of oxalate acid-coordinated mixed-valent [MoV2O4][MoVIO4] helical chains and protonated piperazine cations. The helical chains are built up from the [MoV2O4] units and [MoVIO4] tetrahedral. The central axis about helical chain is a 2-fold screw axis. The compound crystallizes in the space group P21/n of monoclinic system with a = 11.396(2) Å, b = 14.107(3) Å, c = 15.805(3) Å, β = 102.09(3)°, V = 2484.6(9) Å3, Z = 4. Other characterizations by elemental analysis, IR, and thermal analysis for this compound are also given.  相似文献   

6.
《Polyhedron》2007,26(9-11):2252-2258
A 2-D cyanide- and triamine-bridged MnIICrIII ferrimagnet, [Mn3(dien)2(H2O)2][Cr(CN)6]2 · 4H2O (1), has been prepared by the combination of Mn2+, diethylenetriamine (dien) co-ligand and [Cr(CN)6]3−. This compound forms a unique 2-D hollow sheet structure constructed by 1-D ribbon networks on the basis of triamine (dien)-bridged trinuclear MnII units. Compound 1 readily looses all lattice water molecules and irreversibly changes to a dehydrated form, [Mn3(dien)2(H2O)2][Cr(CN)6]2 (1a), in the air. Cryomagnetic studies of 1 and 1a reveal an antiferromagnetic interaction between CrIII and MnII ions, and an unusual long-range ferrimagnetic ordering below 30 K (1) and 40 K (1a) with multiple magnetic phase changes below TC. MCD spectra of 1a show a strong Faraday ellipticity associated with the LMCT band of the Cr–CN below 300 nm. Faraday ellipticity is remarkably enhanced below TC in line with the characteristics long-range ferrimagnetic ordering.  相似文献   

7.
《Comptes Rendus Chimie》2015,18(8):816-822
The treatment of [PdL3(NH3)]OTf (L3 = (PEt3)2(Ph) (1), (2,6-(Cy2PCH2)2C6H3) (3)) with NaNH2 in THF afforded dimeric and monomeric parent-amido palladium(II) complexes with bridging and terminal NH2, respectively, anti-[Pd(PEt3)(Ph)(μ-NH2)]2 (2) and Pd(2,6-(Cy2PCH2)2C6H3)(NH2) (4). The dimeric complex 2 crystallizes in the space group P21/n with a = 13.228(2) Å, b = 18.132(2) Å, c = 24.745(2) Å, β = 101.41(1)°, and Z = 4. It has been found that there are two crystallographically independent molecules with Pd(1)–Pd(2) and Pd(3)–Pd(4) distances of 2.9594 (10) and 2.9401(9) Å, respectively. The monomeric amido complex 4 protonates from trace amounts of water to give the cationic ammine species [Pd(2,6-(Cy2PCH2)2C6H3)(NH3)]+. Complex 4 reacts with diphenyliodonium triflate ([Ph2I]OTf) to give aniline complex [Pd(2,6-(Cy2PCH2)2C6H3)(NH2Ph)]OTf (5). Reaction of 4 with dialkyl acetylenedicarboxylate (DMAD, DEAD) yields diastereospecific palladium(II) vinyl derivative (Z)–(Pd(Cy2PCH2)2C6H3)(CR = CR(NH2)) (R = CO2Me (6a), CO2Et (6b)). Reacting complexes 6a and 6b with p-nitrophenol produces (Pd(Cy2PCH2)2C6H3)(OC6H4p-NO2) (8) and cis-CHR = CR(NH2), exclusively.  相似文献   

8.
《Polyhedron》2005,24(3):397-406
Four 4,4′-bipyridine α,ω-dicarboxylate coordination polymers Cu(bpy)(C5H6O4) (1), Zn(bpy)(C5H6O4) (2), Zn(bpy)(C6H8O4) (3) and Mn(bpy)(C8H12O4) · H2O (4) have been synthesized and structurally characterized by single crystal X-ray diffraction methods (bpy = 4,4-bipyridine, (C5H6O4)2− = glutarate anion, (C6H8O4)2− = adipate anion, (C8H12O4)2− = suberate anion). Their crystal structures are featured by dimeric metal units, which are co-bridged by 4,4′-bipyridine ligands and dicarboxylate anions such as glutarate, adipate and suberate anions to generate 2D layers with a (4,4) topology in 1, 2 and 4 as well as to form 3D frameworks in 3. Two 3D frameworks in 3 interpenetrate with each other to form a topology identical to the well-known Nb6F15 cluster compound. Over 5–300 K, the paramagnetic behavior of 4 follows the Curie–Weiss law χm(T  Θ) = 4.265(5) cm3 mol−1 with the Weiss constant Θ = −6.3(2) K. Furthermore, the thermal behavior of 3 and 4 is also discussed.  相似文献   

9.
Compound Cu2(H2O)2{O3PCH2N(C2H4)2NCH2PO3} (1) has a pillared layered structure in which the organic groups of N,N′-piperazinebis(methylenephosphonate) are sandwiched between the inorganic layers. Compared with other copper phosphonates with layered or pillared layered structures, the inorganic layer in 1 is unique in that each {CPO3} tetrahedron is corner-shared with three {CuO4N} square pyramids through three oxygen donors. Ferromagnetic interactions are mediated between the metal centers. Crystal data: Pbca, a=10.0830(16) Å, b=9.4517(15) Å, c=13.218(2) Å, V=1259.7(3) Å3, Z=4.  相似文献   

10.
The heterometallic cluster complexes {(p-Cymene)Ru[S2C2(B10H10)]}Mo(CO)2{(CO)3Ru[S2C2(B10H10)]} (2) and {(p-Cymene)Ru[Se2C2(B10H10)]}2Mo(CO)2 (3) (p-Cymene = η6-4-isopropyl-toluene) have been synthesized from the reactions of 16-electron half-sandwich ruthenium 1,2-dichalcogenolate carborane complexes (p-Cymene)Ru[E2C2(B10H10)] (E = S(1a), Se(1b)) with Mo(CO)3(Py)3 in the presence of BF3 · Et2O. The complexes of 2 and 3 were characterized by elemental analysis and IR, NMR spectra. The molecular structure of 2 has been characterized by single-crystal X-ray diffraction analysis. Complex 2 is unsymmetrical and the two Ru–Mo single bonds (2.7893(14), 2.8189(13) Å) are each supported by a symmetrically bridging o-carborane-1,2-dithiolato ligand.  相似文献   

11.
《Polyhedron》2007,26(9-11):2189-2199
In order to study the templating effect of the cation and the resulting impact on the magnetic properties, reactions of M(II) salts with [cation][Au(CN)2] were conducted, yielding a series of coordination polymers of the form [cation]{M[Au(CN)2]3} (cation = nBu4N+, PPN+ (bis(triphenylphosphoranylidene)ammonium); M = Ni(II) and Co(II)). The structures of nBu4N{M[Au(CN)2]3} and PPN{M[Au(CN)2]3} (M = Ni and Co) contain two distinct 3-D anionic frameworks of {M[Au(CN)2]3}, hence the framework was sensitive to the cation, but not to the identity of the metal center. In nBu4N{M[Au(CN)2]3}, the metal centers are connected by [Au(CN)2] units to form six 2-D (4, 4) rectangular grids that are fused through the M centers to yield a complex three-dimensional framework which accommodates the nBu4N+ cations. In PPN{M[Au(CN)2]3}, the framework adopts a simpler non-interpenetrated Prussian-blue-type pseudo-cubic array, with the PPN+ cations occupying each cavity; no reduction in dimensionality occurs despite the large cation size. In the presence of water, {Co(H2O)2[Au(CN)2]2} · nBu4N[Au(CN)2] was obtained, a 2-D layered polymer that contains neutral sheets of {Co(H2O)2[Au(CN)2]2} which are separated by nBu4N[Au(CN)2] layers; aurophilic interactions of 3.4250(13) Å and hydrogen-bonding connect the layers. The magnetic properties of all compounds were investigated by SQUID magnetometry. The Ni(II) polymers have similar magnetic behaviour, which are dominated by zero-field splitting with very weak antiferromagnetic interactions at low temperature (D  2–3 cm−1, zJ < 1 cm−1). The magnetic behaviour of all of the Co(II) polymers were found to be very similar, and dominated by single-ion effects (i.e. a large first-order orbital contribution). No significant magnetic coupling is observed in any of these coordination polymers, suggesting that the [Au(CN)2] bridging unit behaves as a poor mediator of magnetic exchange in these high-dimensionality systems.  相似文献   

12.
Ali Barandov  Ulrich Abram 《Polyhedron》2009,28(6):1155-1159
Reactions of [ReOCl3(PPh3)2] with a potentially tridentate Schiff base derived from (2-formylphenyl)diphenylphosphine and 2-aminophenol, HL1P, (HL1P = Ph2PC6H4-2-HCN(C6H4-2-OH)) result in a rapid decomposition of the Schiff base and the formation of a large number of hitherto non-identified metal-containing species, while from similar reactions with the analogoue phosphine oxide HL1PO, (HL1PO = Ph2P(O)C6H4-2-HCN(C6H4-2-OH)) products of the compositions [ReOCl2(PPh3)(L1PO)] (1) and [Re(NC6H4-2-OH)Cl3(PPh3)2] (2) could be isolated. The structure of 2 is an experimental proof of the preceding, metal-induced cleavage of the C–N double bond. A subsequent reaction of the released 2-aminophenol forms the final phenylimido ligand.Reduction of HL1P with NaBH4 gives the phosphine amine H2L2P (H2L2 = Ph2P(C6H4-2-CH2NH(C6H4-2-OH))) in good yield. Reactions of H2L2P with common oxorhenium(V) complexes result in the formation of the stable rhenium(V) complex [ReOCl2(HL2P)] (3) with a facially coordinated HL2P? ligand.  相似文献   

13.
Alkane elimination reaction between Ln(CH2SiMe3)3(THF)2 (Ln = Y, Lu) with one equivalent of the amidines with different steric demanding HL ([CyC(N-2,6-iPr2C6H3)2]H (HL1), [CyC(N-2,6-Me2C6H3)2]H (HL2), [PhC(N-2,6-Me2C6H3)2]H (HL3)) in THF afforded a series of mono(amidinate) rare earth metal bis(alkyl) complexes [CyC(N-2,6-iPr2C6H3)2]Ln(CH2SiMe3)2(THF) (Ln = Y (1), Lu (3)), [CyC(N-2,6-Me2C6H3)2]Ln(CH2SiMe3)2(THF)2 (Ln = Y (4), Lu (6)), and [PhC(N-2,6-Me2C6H3)2]Y(CH2SiMe3)2(THF)2 (7) in 75–89% isolated yields. For the early lanthanide metal Nd, THF slurry of NdCl3 was stirred with three equiv of LiCH2SiMe3 in THF, followed by addition of one equiv of the amidines HL1 or HL2 gave an “ate” complex [CyC(N-2,6-iPr2C6H3)2]Nd(CH2SiMe3)2(μ-Cl)Li(THF)3 (2) in 48% yield and a neutral [CyC(N-2,6-Me2C6H3)2]Nd(CH2SiMe3)2(THF)2 (5) in 52% yield, respectively. They were characterized by elemental analysis, FT-IR, NMR spectroscopy (except for 2 and 5 for their strong paramagnetic property). Complexes 2, 3, 4 and 5 were subjected to X-ray single crystal structure determination. These neutral mono(amidinate) rare earth metal bis(alkyl) complexes showed activity towards l-lactide polymerization to give high molecular weight and narrow molecular weight distribution polymers.  相似文献   

14.
N-Thioamide thiosemicarbazone derived of 2-chloro-4-hydroxy-benzaldehyde (R = H, HL1; R = Me, HL2 and R = Ph, HL3) have been prepared and their reaction with fac-[ReX(CO)3(CH3CN)2] (X = Br, Cl) in chloroform gave the adducts [ReX(CO)3(HL)] (1a X = Cl, R = H; 1a′ X = Br, R = H; 1b X = Cl, R = CH3; 1b′ X = Br, R = CH3; 1c X = Cl, R = Ph; 1c′ X = Br, R = Ph) in good yield. Complexes 1a′ and 1b’ were also obtained by the reaction of HL1 and HL3 with [ReBr(CO)5] in toluene.All the compounds have been characterized by elemental analysis, mass spectrometry (FAB), IR and 1H NMR spectroscopic methods. Moreover, the structures of HL2, HL3 and 1a·H2O were also established by X-ray diffraction. In 1a, the rhenium atom is coordinated by the sulphur and the azomethine nitrogen atoms, forming a five-membered chelate ring, as well as three carbonyl carbon and chloride atoms. The resulting coordination polyhedron can be described as a distorted octahedron.The study of the crystals obtained by slow evaporation of methanol and DMSO solutions of the adducts 1a′ and 1b, respectively, showed the formation of dimer structures based on rhenium(I) thiosemicarbazonates [Re2(L1)2(CO)6]·3H2O (2a)·3H2O and [Re2(L2)2(CO)6]·(CH3)2SO (2b)·2(CH3)2SO. Amounts of these thiosemicarbazonate complexes [Re2(L)2(CO)6] (2) were obtained by reaction of the corresponding free ligands with [ReCl(CO)5] in dry toluene.In 2a·3H2O and 2b·2(CH3)2SO the dimer structures are established by Re–S–Re bridges, where S is the thiolate sulphur from a N,S-bidentate thiosemicarbazonate ligand. In both structures the rhenium coordination sphere is similar; the dimers are in the same diamond Re2S2 face.  相似文献   

15.
《Comptes Rendus Chimie》2007,10(12):1170-1179
In continuation of studies carried out previously [I. Bernal, Inorg. Chim. Acta 96 (1985) 99; I. Bernal, Inorg. Chim. Acta (1986) 121; I. Bernal, E.O. Schlemper, C.K. Fair, Inorg. Chim. Acta 115 (1986) 25; I. Bernal, Inorg. Chim. Acta 101 (1985) 175; I. Bernal, J. Cetrullo, J. Coord. Chem. 20 (1989) 237], we have now expanded the nature and number of cations associated with the [trans-(NH3)2Co(NO2)4] anion in order to better document when, and how, this helical propeller species crystallizes as a conglomerate.[(tren)Co(NO2)2][trans-(NH3)2Co(NO2)4] (I) crystallizes as a racemate in space group P21/n with cell constants of a = 15.8900(2), b = 19.7800(3), c = 26.6200(4) Å, β = 101.970(3)°, z = 15.[(tren)Co(ox)][trans-(NH3)2Co(NO2)4] (II) crystallizes as a racemate in space group I2/a with cell constants of a = 21.592(11), b = 7.050(4), c = 26.46(2) Å, β = 93.09(6)°, z = 8.[(en)2Co(ox)][trans-(NH3)2Co(NO2)4] (III) crystallizes as a racemate in space group P21/n with cell constants of a = 6.4740(1), b = 22.8950(6), c = 13.1660(3) Å, β = 97.3310(10)°, z = 4.[trans-(pn)2Co(NO2)2][trans-(NH3)2Co(NO2)4] (IV) also crystallizes as a racemate in space group P(¯1; no. 2) with cell constants of a = 6.508(2), b = 8.829(5), c = 9.851(5) Å, α = 72.84(2), β = 80.15(3), and γ = 81.45(6)°, z = 1.The most notable results are as follows: (1) all four compounds studied are racemates unlike the previously studied [cis-Co(en)2(NO2)2][trans-(NH3)2Co(NO2)4] [I. Bernal, Inorg Chim Acta 101 (1985) 175] (V) and K[trans-(NH3)2Co(NO2)4] (VI) that crystallize as conglomerates. Nevertheless, they share certain crystalline features, which are readily observed in their packing diagrams.In all the four cases the new data were collected at 295 K and 120 K, using Mo Kα radiation; the former with a Nonius CAD-4 diffractometer and the latter with a Nonius CCD instrument. Of primary interest to us are the changes in packing caused by repeated changes in the charge compensating cations. Comparisons with the packing observed previously in [cis-Co(en)2(NO2)2][trans-(NH3)2Co(NO2)4] (V) and K[trans-(NH3)2Co(NO2)4] (VI) are made since, at the time of publications of those early papers, no detailed study of the packing characteristics of these anions was published and the existing graphic software were primitive compared with the current packages. This oversight is remedied below.  相似文献   

16.
Dinuclear ruthenium(I,I) carboxylate complexes [Ru2(CO)4(μ-OOCR)2]n (R = CH3 (1a), C3H7 (1b), H (1c), CF3 (1d)) and 2-pyridonate complex [Ru2(CO)4(μ-2-pyridonate)2]n (3) catalyze efficiently the cyclopropanation of alkenes with methyl diazoacetate. High yields are obtained with terminal nucleophilic alkenes (styrene, ethyl vinyl ether, α-methylstyrene), medium yields with 1-hexene, cyclohexene, 4,5-dihydrofuran and 2-methyl-2-butene. The E-selectivity of the cyclopropanes obtained from the monosubstituted alkenes and the cycloalkenes decreases in the order 1b > 1a > 1d > 1c. The cyclopropanation of 2-methyl-2-butene is highly syn-selective. Several complexes of the type [Ru2(CO)4(μ-L1)2]2 (4) and (5), [Ru2(CO)4(μ-L1)2L2] (L2 = CH3OH, PPh3) (6)–(9) and [Ru2(CO)4(CH3CN)2(μ-L1)2] (10) and (11), where L1 is a 6-chloro- or 6-bromo-2-pyridonate ligand, are also efficient catalysts. Compared with catalyst 3, a halogen substituent at the pyridonate ligand affects the diastereoselectivity of cyclopropanation only slightly.  相似文献   

17.
A systematic investigation of the reactions of Cu(ClO4)2 · 6H2O with maleamic acid (H2L) in the presence of 2,2′-bipyridine (bpy) has been carried out. The chemical and structural identity of the products depends on the solvent, the absence or presence of external hydroxides in the reaction mixture and the molar ratio of the reactants. Various reaction schemes have led to the isolation of the complexes [Cu2(HL)2(bpy)2(H2O)2](ClO4)2 (1), [Cu2(HL)2(bpy)2(H2O)2](ClO4)2 · 2H2O (1 · 2H2O), [Cu(L′′)(bpy)]n · 2nH2O (2 · 2nH2O), [Cu2(L′′)(bpy)2(H2O)2]n(ClO4)2n · 0.5nH2O (3 · 0.5nH2O), [Cu2(L′′)2(bpy)2] · 2MeOH (5 · 2MeOH), [Cu2(L′)2(bpy)2(ClO4)2] (6) and [Cu(ClO4)2(bpy)(MeCN)2] (7b), where L′′2? and L′? are the maleate(?2) and monomethyl maleate(?1) ligands, respectively. The HL? ion has been transformed to L′′2? and L′? in the known compounds 2 · 2nH2O and 6, respectively, via metal ion-assisted processes involving hydrolysis (2 · 2nH2O) and methanolysis (6) of the primary amide group. The reaction that leads to 6 takes place through the formation of the mononuclear complex [Cu(ClO4)2(bpy)(MeOH)2] (7a), whose structure was assigned on the basis of its spectral similarity with the structurally characterized complex 7b. The structures of the cations in 1 and 1 · 2H2O consists of two CuII atoms bridged by the carboxylate groups of the two HL? ligands, each exhibiting the less common η2 coordination mode; a chelating bpy molecule and a H2O ligand complete square pyramidal coordination at each metal centre. The structure of the dinuclear repeating unit in the 1D coordination polymer 3 · 0.5nH2O consists of two CuII atoms bridged by two syn,syn η1:η1:μ2 carboxylate groups belonging to two L′′2? ions; each ligand bridged two neighboring [CuII,II2] units thus promoting the formation of a helical chain. The structure of the dinuclear molecule of complex 5 · 2MeOH consists of two CuII atoms bridged by two η2 carboxylate groups from two L′′2? ligands; the second carboxylate group of each maleate(?2) ligand is monodentately coordinated to CuII, creating a remarkable seven-membered chelating ring. The L′? ion behaves as a carboxylate-type ligand in 6, with the carboxylate group being in the familiar syn,syn η1:η1:μ2 coordination mode; a chelating bpy molecule and a coordinated ClO4? complete five-coordination at each CuII centre. The crystal structures of the complexes are stabilized by various H-bonding patterns. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the ligands.  相似文献   

18.
The synthesis of a new bidentate anilide ligand and four uranium amide complexes utilizing the ligand are reported. The secondary aniline HN[R]ArMeL (R = C(CD3)2CH3, ArMeL = 2-NMe2-5-MeC6H3) is prepared by condensation of H2NArMeL and acetone-d6 followed by alkylation of the resulting imine with MeLi. The ligand precursors (Et2O)Li(N[R]ArMeL) and K(N[R]ArMeL) are prepared through deprotonation of HN[R]ArMeL with n-BuLi and KH, respectively. Treatment of UI3(THF)4 with (Et2O)Li(N[R]ArMeL) (2 equiv) provides the uranium(III) -ate complex Li[I2U(N[R]ArMeL)2] (Li[1]), while treatment of UI3 with three equiv. of K(N[R]ArMeL) provides the neutral uranium(III) complex U(N[R]ArMeL)3 (2). Both uranium(III) complexes are susceptible to 1e oxidation, as is demonstrated by the syntheses of the uranium(IV) derivatives I2U(N[R]ArMeL)2 (1) and [U(N[R]ArMeL)3][OTf] ([2][OTf]; OTf = CF3SO3). The spectroscopic and X-ray structural characterization of all four uranium complexes is described. The structures of 2 and [2][OTf] exhibit a large degree of steric pressure about the uranium center, effectively preventing the [2]+ ion from achieving a seven-coordinate structure.  相似文献   

19.
《Solid State Sciences》2007,9(6):491-495
A novel zinc(II) phthalate compound, [Zn{C6H4(COO)2}2]n2−[NH3–(CH2)3–NH3]n2+, 1 which contains four different phthalate moieties coordinated to the Zn(II) ion through one each of their carboxylate moieties in a η1-form and each phthalate moiety acting as a bridging unit with an overall tetrahedral geometry around the metal ion has been prepared and structurally characterized. The structure is unique in the sense that the dianionic moieties [Zn{C6H4(COO)2}2]2− form an infinite one-dimensional network composed of 14-membered cyclic units interconnected in a way that they are disposed alternatively in almost perpendicular planes. The dicationic [NH3–(CH2)3–NH3]2+ units are seen to hold these one-dimensional chains by strong coulombic and hydrogen bond interaction, resulting in an infinite two-dimensional layered structure of 1. The compound is thermally stable up to 250 °C. Above this temperature it loses one equivalent of phthalate moiety along with the diammonium unit to yield Zn(II) phthalate. The thermodynamic and kinetic parameters associated with this process could be evaluated using Coats–Redfern equation which shows the activation energy Ea for the process as 305.0 kJ mol−1, the frequency factor A as 1.49 × 1011 s−1 and the entropy change ΔS as −35.90 JK−1 mol−1. Fluorescent emission properties of 1 was studied by exciting the compound at 380 nm and also at 322 nm which were found to be the two λmax corresponding to absorptions of the molecule. Interestingly, the compound gave same type of emission spectra showing a maximum around 444 nm on exciting at these two different wavelengths, indicating that the molecule comes to the first excited state from the higher excited state by a fast non-radiative process before it exhibits singlet emission to come to the ground state.  相似文献   

20.
Syntheses of three benzaldazine compounds 13 with the general formula Ar1(CH = N–N = HC)Ar2 (Ar1 = Ar2 = 2-OH-3,5-tBu2C6H2 (1), Ar1 = Ar2 = 2-BrC6H4 (2), Ar1 = ortho-C6H4(NHC6H3-Me2-2,6), Ar2 = C6H4F-2 (3)) are described. All compounds were characterized by elemental analysis, 1H NMR, 13C NMR, IR spectroscopy and single-crystal X-ray crystallography. The different supramolecular structures were obtained through different weak interactions (C ? H···O, O ? H···N and π···π interactions for 1; C ? H···Br and Br···Br interactions for 2; C ? H···F and C ? H···N interactions for 3). Compound 1 shows solvent-dependent fluorescent properties with blue to green emission on the increasing of the solvent polarity. Compounds 2, 3 show blue photoluminescence in different solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号