首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Given a random quantum state of multiple distinguishable or indistinguishable particles, we provide an effective method, rooted in symplectic geometry, to compute the joint probability distribution of the eigenvalues of its one-body reduced density matrices. As a corollary, by taking the distribution’s support, which is a convex moment polytope, we recover a complete solution to the one-body quantum marginal problem. We obtain the probability distribution by reducing to the corresponding distribution of diagonal entries (i.e., to the quantitative version of a classical marginal problem), which is then determined algorithmically. This reduction applies more generally to symplectic geometry, relating invariant measures for the coadjoint action of a compact Lie group to their projections onto a Cartan subalgebra, and can also be quantized to provide an efficient algorithm for computing bounded height Kronecker and plethysm coefficients.  相似文献   

2.
The distribution of eigenvalues of N 2 N random matrices in the limit N M X is the solution to a variational principle that determines the ground state energy of a confined fluid of classical unit charges. This fact is a consequence of a more general theorem, proven here, in the statistical mechanics of unstable interactions. Our result establishes the eigenvalue density of some ensembles of random matrices which were not covered by previous theorems.  相似文献   

3.
This is a continuation of our earlier paper (Tao and Vu, , 2010) on the universality of the eigenvalues of Wigner random matrices. The main new results of this paper are an extension of the results in Tao and Vu (, 2010) from the bulk of the spectrum up to the edge. In particular, we prove a variant of the universality results of Soshnikov (Commun Math Phys 207(3):697–733, 1999) for the largest eigenvalues, assuming moment conditions rather than symmetry conditions. The main new technical observation is that there is a significant bias in the Cauchy interlacing law near the edge of the spectrum which allows one to continue ensuring the delocalization of eigenvectors.  相似文献   

4.
Separability Criterion for Density Matrices   总被引:2,自引:0,他引:2  
  相似文献   

5.
6.
 By applying the supersymmetric approach we rigorously prove smoothness of the averaged density of states for a three dimensional random band matrix ensemble, in the limit of infinite volume and fixed band width. We also prove that the resulting expression for the density of states coincides with the Wigner semicircle with a precision 1/W 2 , for W large but fixed. Received: 6 February 2002 / Accepted: 17 July 2002 Published online: 7 November 2002 RID="*" ID="*" Supported by NSF grant DMS 9729992  相似文献   

7.
In this paper, we study the complex Wigner matrices $M_{n}=\frac{1}{\sqrt{n}}W_{n}$ whose eigenvalues are typically in the interval [?2,2]. Let λ 1λ 2?≤λ n be the ordered eigenvalues of M n . Under the assumption of four matching moments with the Gaussian Unitary Ensemble (GUE), for test function f 4-times continuously differentiable on an open interval including [?2,2], we establish central limit theorems for two types of partial linear statistics of the eigenvalues. The first type is defined with a threshold u in the bulk of the Wigner semicircle law as $\mathcal{A}_{n}[f; u]=\sum_{l=1}^{n}f(\lambda_{l})\mathbf{1}_{\{\lambda_{l}\leq u\}}$ . And the second one is $\mathcal{B}_{n}[f; k]=\sum_{l=1}^{k}f(\lambda_{l})$ with positive integer k=k n such that k/ny∈(0,1) as n tends to infinity. Moreover, we derive a weak convergence result for a partial sum process constructed from $\mathcal{B}_{n}[f; \lfloor nt\rfloor]$ . The main difficulty is to deal with the linear eigenvalue statistics for the test functions with several non-differentiable points. And our main strategy is to combine the Helffer-Sjöstrand formula and a comparison procedure on the resolvents to extend the results from GUE case to general Wigner matrices case. Moreover, the results on $\mathcal{A}_{n}[f;u]$ for the real Wigner matrices will also be briefly discussed.  相似文献   

8.
9.
Using the monotonicity of relative entropy of composite quantum systems, we obtain new entropic inequalities for arbitrary density matrices of single qudit states. Examples of qutrit state inequalities and the “qubit portrait” bound for the distance between the qutrit states are considered in explicit form.  相似文献   

10.
We prove the Law of Large Numbers and the Central Limit Theorem for analogs of U- and V- (von Mises) statistics of eigenvalues of random matrices as their size tends to infinity. We show first that for a certain class of test functions (kernels), determining the statistics, the validity of these limiting laws reduces to the validity of analogous facts for certain linear eigenvalue statistics. We then check the conditions of the reduction statements for several most known ensembles of random matrices. The reduction phenomenon is well known in statistics, dealing with i.i.d. random variables. It is of interest that an analogous phenomenon is also the case for random matrices, whose eigenvalues are strongly dependent even if the entries of matrices are independent.  相似文献   

11.
We provide a new expression of the quantum Fisher information (QFI) for a general system. Utilizing this expression, the QFI for a non-full rank density matrix is only determined by its support. This expression can bring convenience for an infinite-dimensional density matrix with a finite support. Besides, a matrix representation of the QFI is also given.  相似文献   

12.
We investigate entanglement and separability criteria of multipartite (n-partite) state by examining ranks of its reduced density matrices. Firstly, we construct the general formula to determine the criterion. A rank of origin density matrix always equals one, meanwhile ranks of reduced matrices have various ranks. Next, separability and entanglement criterion of multipartite is determined by calculating ranks of reduced density matrices. In this article we diversify multipartite state criteria into completely entangled state, completely separable state, and compound state, i.e. sub-entangled state and sub-entangledseparable state. Furthermore, we also shorten the calculation proposed by the previous research to determine separability of multipartite state and expand the methods to be able to differ multipartite state based on criteria above.  相似文献   

13.
We consider Sturm-Liouville operators with measure-valued weight and potential, and positive, bounded diffusion coefficient which is bounded away from zero. By means of a local periodicity condition, which can be seen as a quantitative Gordon condition, we prove a bound on eigenvalues for the corresponding operator in L p , for \(1\leq p<\infty \). We also explain the sharpness of our quantitative bound, and provide an example for quasiperiodic operators.  相似文献   

14.
15.
The purpose of this paper is to establish universality of the fluctuations of the largest eigenvalue for some non-necessarily Gaussian complex Deformed Wigner Ensembles. The real model is also considered. Our approach is close to the one used by A. Soshnikov (cf. [11]) in the investigations of classical real or complex Wigner Ensembles. It is based on the computation of moments of traces of high powers of the random matrices under consideration.  相似文献   

16.
The relation between random normal matrices and conformal mappings discovered by Wiegmann and Zabrodin is made rigorous by restricting normal matrices to have spectrum in a bounded set. It is shown that for a suitable class of potentials the asymptotic density of eigenvalues is uniform with support in the interior domain of a simple smooth curve.  相似文献   

17.
A new layers method is presented for multipartite separability of density matrices from simple graphs. Full separability of tripartite states is studied for graphs on degree symmetric premise. The models are generalized to multipartite systems by presenting a class of fully separable states arising from partially symmetric graphs.  相似文献   

18.
Unlike bosons, fermions always have a non-trivial entanglement. Intuitively, Slater determinantal states should be the least entangled states. To make this intuition precise we investigate entropy and entanglement of fermionic states and prove some extremal and near extremal properties of reduced density matrices of Slater determinantal states.  相似文献   

19.
20.
Solving linear systems of equations is one of the most common and basic problems in classical identification systems. Given a coefficient matrix A and a vector b, the ultimate task is to find the solution x such that Ax=b. Based on the technique of the singular value estimation, the paper proposes a modified quantum scheme to obtain the quantum state |x corresponding to the solution of the linear system of equations in O(κ2rpolylog(mn)/ϵ) time for a general m×n dimensional A, which is superior to existing quantum algorithms, where κ is the condition number, r is the rank of matrix A and ϵ is the precision parameter. Meanwhile, we also design a quantum circuit for the homogeneous linear equations and achieve an exponential improvement. The coefficient matrix A in our scheme is a sparsity-independent and non-square matrix, which can be applied in more general situations. Our research provides a universal quantum linear system solver and can enrich the research scope of quantum computation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号