共查询到20条相似文献,搜索用时 15 毫秒
1.
Rate constants for the recombination reaction OD + NO2 + M → DNO3 + M have been determined in the falloff region (5–500 torr) and at 297 ± 2 K, in the presence of He, N2, and SF6 as third bodies, by using a pulsed laser photolysis-resonance absorption technique. Values of k0, kx and the falloff parameter Fc have been estimated. Our rate constants were, within the experimental uncertainty, the same as those reported for the reaction of OH radicals with NO2. 相似文献
2.
Bin Jing Jing-yao Liu Ze-sheng Li Ying Wang Li Wang Hong-qing He Chia-chung Sun 《Journal of Molecular Structure》2005,732(1-3):225-231
The dynamics properties of the hydrogen abstraction reaction CF3O+CH4→CF3OH+CH3 are studied by dual-level direct dynamics method. Optimization calculations are preformed by B3LYP and MP2 with the 6-311G(d,p) basis set, and the single-point calculations are done at the multi-coefficient correction method based on quadratic configuration interaction with single and double excitations (MC-QCISD) method. The rate constants are evaluated by canonical variational transition-state theory with a small-curvature tunneling correction over a wide range of temperature 200–2000 K. The agreement between theoretical and experimental rate constants is good in the measured temperature range. The calculated results show that the variational effect is small and almost neglected over the whole temperature range, whereas, the tunneling correction plays a role in the lower temperature range. The kinetic isotope effect for the reaction is ‘normal’. The value of kH/kD is 2.38 at room temperature and it decreases with the temperature increasing. 相似文献
3.
The mechanism of the H2NO(2B1)→NO(2Π)+H2 reaction has been examined using ab initio molecular orbital methods. Ground-state and first-excited-state potential surfaces were plotted at the FOCI/cc-pVTZ level of theory as functions of two appropriate internal degrees of freedom. A conical intersection was found on the Cs pathway that is symmetric with respect to the plane perpendicular to the molecular plane of C2v H2NO(2B1). It is therefore considered that trajectories that start from H2NO(2B1) towards the product region detour around the conical intersection, pass through the neighborhood of the transition state that is located at the saddle point on the Cs pathway, and finally reach the products, NO(2Π)+H2. Thus we can explain the mechanism of the H2NO(2B1)→NO(2Π)+H2 reaction, which has remained unclear to date. 相似文献
4.
The low-pressure recombination rate constants of the reactions I + NO + M → INO + M (with 14 different M) and I + NO2 + M → INO2 + M (with 26 different M) have been measured at 330°K by laser flash photolysis. The collision efficiencies βc are analyzed and compared with other thermal activation systems. Whereas βc increases in one reaction with an increasing number of atoms in M, practically no such effect is found when, for the same M, different reactions with varying complexities of the reacting molecules are considered. 相似文献
5.
The B1LYP, B3LYP and MPW1PW91 density functional theory methods combined with the 6-311G(2d, 2p) basis set were used to carry out a density functional theory study of the NH3+HCO3H→HCOOH+H3NO reaction. The purpose of this work is to study the reaction mechanism from the viewpoint of bond order transformations throughout the course of the reaction, and propose the reasons for the apparent differences in activation barriers. 相似文献
6.
The rate coefficient for the reaction of CF3O2 with NO has been measured at 295 K in helium using a flow tube sampled by a mass spectrometer. The value obtained for this rate coefficient was (17.8 ± 3.6) × 10?12 cm?3 s?1 and found to be independent of [He] over the range (6.3 ? 16.8) × 1016 cm?3. This value is approximately a factor of 2 higher than earlier measurements of the rate coefficients for CH3O2 and C2H5O2 with NO and indicates that further measurements are required for this important class of reactions. 相似文献
7.
Gunnar Nyman 《Chemical physics letters》1995,240(5-6):571-577
The effect on the thermal rate constant and the differential cross-sections of varying the dimensionality of quantum scattering calculations of a polyatomic reaction is investigated. The rotating bond approximation (RBA; 3D) and a rotating line approximation (RLA; 2D) are used for the CH4 + OH → CH3 + H2O reaction. It is found that the RBA and RLA results are in close agreement when an adiabatic treatment is used for the degree of freedom which is treated explicitly in the RBA but not in the RLA. 相似文献
8.
Branko S. Jursic 《Journal of Molecular Structure》1998,430(1-3):17-22
The activation barrier for the CH4 + H → CH3 + H2 reaction was evaluated with traditional ab initio and Density Functional Theory (DFT) methods. None of the applied ab initio and DFT methods was able to reproduce the experimental activation barrier of 11.0-12.0 kcal/mol. All ab initio methods (HF, MP2, MP3, MP4, QCISD, QCISD(T), G1, G2, and G2MP2) overestimated the activation energy. The best results were obtained with the G2 and G2MP2 ab initio computational approaches. The zero-point corrected energy was 14.4 kcal mol−1. Some of the exchange DFT methods (HFB) computed energies which were similar to the highly accurate ab initio methods, while the B3LYP hybrid DFT methods underestimated the activation barrier by 3 kcal mol−1. Gradient-corrected DFT methods underestimated the barrier even more. The gradient-corrected DFT method that incorporated the PW91 correlational functional even generated a negative reaction barrier. The suitability of some computational methods for accurately predicting the potential energy surface for this hydrogen radical abstraction reaction was discussed. 相似文献
9.
Ian W. M. Smith Richard P. Tuckett Christopher J. Whitham 《Chemical physics letters》1992,200(6):615-623
A laser pulse-and-probe method has been used to determine the nascent vibrational populations in NO(v=0–4) and O2(v=6–11) formed in the thermal reaction: O(3P) + NO2 → O2(v) + NO(v). A frequency-tripled Nd: YAG laser is used to photolyse NO2, diluted tenfold in Ar, and laser-induced fluorescence spectroscopy in the NO A 2Σ+-X 2Π and O2 B 3Σ−u -X 3Σ−g electronic band system is used both to follow the kinetics of individual vibrational states and to determine the nascent vibrational distributions. The majority of the NO product is formed in v = 0 and the average vibrational yield is ≈ 4.6%. The O2 populations fall monotonically from v = 6 to 11 in a distribution close to what is expected on prior grounds. Based on a surprisal analysis, the average vibrational energy yield in O2 is ≈ 26%. The nature of the reaction dynamics is discussed. 相似文献
10.
The gas-phase reaction of the NO3 radical with NO2 was investigated, using a flash photolysis-visible absorption technique, over the total pressure range 25–400 Torr of nitrogen or oxygen diluent at 298 ± 2 K. The absolute rate constants determined (in units of 10?13 cm3 molecule?1 s?1) at 25, 100, and 400 Torr total pressure were, respectively, (4.0 ± 0.5), (7.0 ± 0.7), and (10 ± 2) for M = N2 and (4.5 ± 0.5), (8.0 ± 0.4), and (8.8 ± 2.0) for M = O2. These data show that the third-body efficiencies of N2 and O2 are identical, within the error limits, and that previous evaluations for M = N2 are applicable to the atmosphere. In addition, upper limits were determined for the rate constants of the reactions of the NO3 radical with methanol, ethanol, and propan-2-ol of ?6 × 10?16, ?9 × 10?16, and ?2.3 × 10?15 cm3 molecule?1 s?1, respectively, at 298 ± 2 K. 相似文献
11.
Saddle point geometries and barrier heights have been calculated for the H abstraction reaction HO2(2A″)+H(2S) → H2(1Σ+g)+O2(3Σ−g) and the concerted H approach-O removing reaction HO2 (2A″)+H(2S) → H2O(1A1)+O(3P) by using SDCI wavefunctions with a valence double-zeta plus polarization basis set. The saddle points are found to be of Cs symmetry and the barrier heights are respectively 5.3 and 19.8 kcal by including size consistent correction. Moreoever kinetic parameters have been evaluated within the framework of the TST theory. So activation energies and the rate constants are estimated to be respectively 2.3 kcal and 0.4×109 ℓ mol−1 s−1 for the first reaction, 20.0 kcal and 5.4.10−5 ℓ mol−1 s−1 for the second. Comparison of these results with experimental determinations shows that hydrogen abstraction on HO2 is an efficient mechanism for the formation of H2 + O2, while the concerted mechanism envisaged for the formation of H2O + O is highly unlikely. 相似文献
12.
Michle Fontaine Joseph Delhalle Mireille Defranceschi Grard Lcayon 《Journal of Molecular Structure》1995,330(1-3):161-165
The relative modifications induced in the structure of perfluorodiethyl ether (CF3CF2)2O and perfluoroisopropyl methyl ether CF3OCF(CF3)2 by oxygen and fluorine protonation are studied at the RHF level with the 3–21G basis and correlated with their proton affinities and dissociation energies. 相似文献
13.
Reactive scattering is observed for K + CF3I → KI+CF3 where the CF3I is oriented “sideways” with the I end pointing towards or away from the detector. Angular distributions are extremely broad and completely different from “heads” and “tails” orientations. Maximum signal corresponds to the “towards” orientation although reactivity of the two orientations is equivalent. 相似文献
14.
A pulsed CO2 laser was used to irradiate a rapidly flowing mixture of NO, O3, and SF6. When the laser was tuned to an SF6 absorption line, an increase in the visible NO*2 emission was observed. The laser-induced signal has two unusual features. First, the rise time is much longer than is observed when O3 is excited directly, and, second, the signal decays to a value above the original baseline. The rise rate is attributed to VV energy transfer from SF26 to O3, while the baseline shift is attributed to a temperature jump resulting from rapid non-resonant VV relaxation within the SF6 molecule. Both the size of the T-jump and the fraction of vibrationally excited ozone molecules vary inversely with NO pressure. 相似文献
15.
The absolute thermal rate coefficient for the reaction NH3+ + NH3 → NH4+ + NH2 has been determined experimentally for the first time for NH3+ (ν = 0) reactant ions. An increase in Evib results in a decrease in the rate coefficient for proton transfer. 相似文献
16.
Xiang Zhang Yi-hong Ding Ze-sheng Li Xu-ri Huang Chia-chung Sun 《Chemical physics letters》2000,330(5-6):577-584
The ab initio direct dynamics method at the G2//UQCISD/6-311 + G(d,p) level is employed to study the hydrogen abstraction reaction C2(3Πu)+H2 → C2H+H over a wide temperature range 100–4650 K. The barrier heights obtained for the forward and reverse reactions are 7.78 and 17.53 kcal/mol, respectively. Comparing with one recent experiment, the calculated forward rate constants over the temperature range 2580–4650 K are about 4.4–13.5 times greater and show a steeper temperature-dependent effect. This indicates that further experimental investigation on this simple radical reaction may still be desired. Finally, G2//UQCISD/6-311 + G(2df,2p) calculations are performed to test the reliability of the G2//UQCISD/6-311 + G(d,p) results. 相似文献
17.
Darryl D. Desmarteau William Y. Lam Brian A. OBrien Shi-Ching Chang 《Journal of fluorine chemistry》1984,25(3):387-394
Reactions of the fluorinated amines (CF3)2NH, CF3N(OCF3)H, CF3N[OCF(CF3)2]H, CF3NHF and SF5NHF with the strong acid HF/AsF5 form the corresponding ammonium salts Rf1Rf2NH2+AsF6? and RfNFH2+ AsF6? in high yield. [Rf1=CF3, Rf2=CF3, CF3O, (CF3)2CFO; Rf=CF3, SF5] The colorless crystalline solids are stable for prolonged periods at 22°C in sealed FEP containers. They have dissociation pressures at 22°C ranging from ~5 torr (RfNFH2+ AsF6?) to ~50 torr [CF3N(OCF3)H2+AsF6?]. 19F NMR and Raman spectroscopy were used to identify the compounds. 相似文献
18.
Ab-initio molecular orbital (MO) and direct ab initio dynamics calculations have been applied to the gas phase SN2 reaction F− + CH3Cl → CH3F + Cl−. Several basis sets were examined in order to select the most convenient and best fitted basis set to that of high-quality calculations. The Hartree–Fock (HF) 3−21+G(d) calculation reasonably represents a potential energy surface calculated at the MP2/6−311++G(2df,2pd) level. A direct ab initio dynamics calculation at the HF/3−21+G(d) level was carried out for the SN2 reaction. A full dimensional ab initio potential energy surface including all degrees of freedom was used in the dynamics calculation. Total energies and gradients were calculated at each time step. Two initial configurations at time zero were examined in the direct dynamics calculations: one is a near collinear collision, and the other is a side-attack collision. It was found that in the near collinear collision almost all total available energy is partitioned into two modes: the relative translational mode between the products (40%) and the C − F stretching mode (60%). The other internal modes of CH3F were still in the ground state. The lifetimes of the early- and late-complexes F− … CH3Cl and FCH3 … Cl− are significantly short enough to dissociate directly to the products. On the other hand, in the side-attack collision, the relative translation energy was about 20% of total available energy. 相似文献
19.
Quasiclassical trajectory calculations have been performed to determine the effect of reactant collision energy on product state distributions in the reaction O(1D) + H2 → OH(2Π) + H. The product vibrational distribution becomes more excited as the collision energy is increased. This is not due to an increase in the cross section for collinear abstraction. A detailed analysis has shown that strong O---H2 repulsion, which occurs during the insertion of the O into the H---H bond, converts the kinetic energy of the reacting system to vibrational motion of the intermediate. 相似文献
20.
Rate coefficients of the title reaction R31 (SO2 + O + M → SO3 + M) and R56 (SO2 + HO2→ SO3 + OH), important in the conversion of S(IV) to S(VI), were obtained at T = 970–1150 K and ρave = 16.2 μmol cm?3 behind reflected shock waves by a perturbation method. Shock‐heated H2/O2/Ar mixtures were perturbed by adding small amounts of SO2 (1%, 2%, and 3%) and the OH temporal profiles were then measured using laser absorption spectroscopy. Reaction rate coefficients were elucidated by matching the characteristic reaction times acquired from the individual experimental absorption profiles via simultaneous optimization of k31 and k56 values in the reaction modeling (for satisfactory matches to the observed characteristic times, it was necessary to take into account R56). In the experimental conditions of this study, R31 is in the low‐pressure limit. The rate coefficient expressions fitted using the combined data of this study and the previous experimental results are k31,0/[Ar] = 2.9 × 1035 T?6.0 exp(?4780 K/T) + 6.1 × 1024 T?3.0 exp(?1980 K/T) cm6 mol?2 s?1 at T = 300–2500 K; k56 = 1.36 × 1011 exp(?3420 K/T) cm3 mol?1 s?1 at T = 970–1150 K. Computer simulations of typical aircraft engine environments, using the reaction mechanism with the above k31,0 and k56 expressions, gave the maximum S(IV) to S(VI) conversion yield of ca. 3.5% and 2.5% for the constant density and constant pressure flow condition, respectively. Moreover, maximum conversions occur at rather higher temperatures (~1200 K) than that where the maximum k31,0 value is located (~800 K). This is because the conversion yield is dependent upon not only the k31,0 and k56 values (production flux) but also the availability of H, O, and HO2 in the system (consumption flux). © 2010 Wiley Periodicals, Inc. * 1 This article is a U.S. Government work and, as such, is in the public domain of the United States of America. Int J Chem Kinet 42: 168–180, 2010 相似文献