首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W. Ehlers  P. Blome 《PAMM》2002,1(1):365-366
In the present contribution, the formulation of the governing equations of coupled flow and deformation processes in porous materials is based on the well‐founded Theory of Porous Media (TPM) [2, 3]. Embedded in this concept, the model under consideration represents a triphasic medium of a cohesive‐frictional elasto‐plastic solid skeleton and a binary pore‐fluid, which is composed of a materially incompressible wetting phase (here water) and a materially compressible non‐wetting phase (here air). The unsaturated domain (saturation in terms of liquid saturation) of the porous medium is included in the model by the application of a suitable capillary‐pressure‐saturation relation, which takes into account the interaction of the solid skeleton and the two pore‐fluids. Furthermore, the interaction is described by Darcy's filter law including a relative permeability, which depends on the deformation of the pore space and the degree of saturation.  相似文献   

2.
The interaction of flexural‐gravity waves with a thin circular‐arc‐shaped permeable plate submerged beneath the ice‐covered surface of water with uniform finite depth is considered under the assumption of linear theory. The problem is reduced to a second kind hypersingular integral equation for the potential difference across the plate which is solved approximately by an expansion–collocation method. Utilizing the solution, the reflection and the transmission coefficients and the hydrodynamic forces are evaluated numerically. The focus of the paper is to illustrate the effect of a porous curved plate submerged in finite depth water with an ice‐cover on the normally incident waves. Numerical results for a circular‐arc‐shaped plate for different configurations are derived and represented graphically. Also, by choosing an appropriate set of parameters, the known results for a circular‐arc‐shaped rigid plate submerged in deep water and a semicircular porous plate submerged in finite depth water with a free surface are recovered as special cases.  相似文献   

3.
In this paper, we establish finite‐region stability (FRS) and finite‐region boundedness analysis methods to investigate the transient behavior of discrete two‐dimensional Roesser models. First, by building special recursive formulas, a sufficient FRS condition is built via solvable linear matrix inequalities constraints. Next, by designing state feedback controllers, the finite‐region stabilization issue is analyzed for the corresponding two‐dimensional closed‐loop system. Similar to FRS analysis, the finite‐region boundedness problem is addressed for Roesser models with exogenous disturbances and corresponding criteria, and linear matrix inequalities conditions are reported. To conclude the paper, we provide numerical examples to confirm the validity of the proposed methods. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
5.
Block Krylov subspace methods (KSMs) comprise building blocks in many state‐of‐the‐art solvers for large‐scale matrix equations as they arise, for example, from the discretization of partial differential equations. While extended and rational block Krylov subspace methods provide a major reduction in iteration counts over polynomial block KSMs, they also require reliable solvers for the coefficient matrices, and these solvers are often iterative methods themselves. It is not hard to devise scenarios in which the available memory, and consequently the dimension of the Krylov subspace, is limited. In such scenarios for linear systems and eigenvalue problems, restarting is a well‐explored technique for mitigating memory constraints. In this work, such restarting techniques are applied to polynomial KSMs for matrix equations with a compression step to control the growing rank of the residual. An error analysis is also performed, leading to heuristics for dynamically adjusting the basis size in each restart cycle. A panel of numerical experiments demonstrates the effectiveness of the new method with respect to extended block KSMs.  相似文献   

6.
《Mathematische Nachrichten》2017,290(8-9):1406-1419
In this paper we generalize minimal p‐divisible groups defined by Oort to minimal F‐crystals over algebraically closed fields of positive characteristic. We prove a structural theorem of minimal F‐crystals and give an explicit formula of the Frobenius endomorphism of the basic minimal F‐crystals that are the building blocks of the general minimal F‐crystals. We then use minimal F‐crystals to generalize minimal heights of p‐divisible groups and give an upper bound of the isomorphism numbers of F‐crystals, whose isogeny type are determined by simple F‐isocrystals, in terms of their ranks, Hodge slopes and Newton slopes.  相似文献   

7.
ABSTRACT. In classical theoretical ecology there are numerous standard models which are simple, generally applicable, and have well‐known properties. These standard models are widely used as building blocks for all kinds of theoretical and applied models. In contrast, there is a total lack of standard individual‐based models (IBM's), even though they are badly needed if the advantages of the individual‐based approach are to be exploited more efficiently. We discuss the recently developed ‘field‐of‐neighborhood’ approach as a possible standard for modeling plant populations. In this approach, a plant is characterized by a circular zone of influence that grows with the plant, and a field of neighborhood that for each point within the zone of influence describes the strength of competition, i.e., growth reduction, on neighboring plants. Local competition is thus described phenomenologically. We show that a model of mangrove forest dynamics, KiWi, which is based on the FON approach, is capable of reproducing self‐thinning trajectories in an almost textbook‐like manner. In addition, we show that the entire biomass‐density trajectory (bdt) can be divided into four sections which are related to the skewness of the stem diameter distributions of the cohort. The skewness shows two zero crossings during the complete development of the population. These zero crossings indicate the beginning and the end of the self‐thinning process. A characteristic decay of the positive skewness accompanies the occurrence of a linear bdt section, the well‐known self‐thinning line. Although the slope of this line is not fixed, it is confined in two directions, with morphological constraints determining the lower limit and the strength of neighborhood competition exerted by the individuals marking the upper limit.  相似文献   

8.
The automated multi‐level sub‐structuring (AMLS) method is a powerful technique to determine a large number of eigenpairs with moderate accuracy of huge symmetric and definite eigenvalue problems in structural analysis. This paper is concerned with an adapted version of AMLS for eigenfrequency analysis of fluid–solid interaction systems. Although fluid–solid vibrations are governed by an unsymmetric eigenproblem, the modified AMLS method needs approximately the same computational effort. An error bound related to the eigenvalue approximations is proved. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
This paper deals with an adaptation of the Poincaré‐Lindstedt method for the determination of periodic orbits in three‐dimensional nonlinear differential systems. We describe here a general symbolic algorithm to implement the method and apply it to compute periodic solutions in a three‐dimensional Lotka‐Volterra system modeling a chain food interaction. The sufficient conditions to make secular terms disappear from the approximate series solution are given in the paper.  相似文献   

10.
This article proposes a class of high‐order energy‐preserving schemes for the improved Boussinesq equation. To derive the energy‐preserving schemes, we first discretize the improved Boussinesq equation by Fourier pseudospectral method, which leads to a finite‐dimensional Hamiltonian system. Then, the obtained semidiscrete system is solved by Hamiltonian boundary value methods, which is a newly developed class of energy‐preserving methods. The proposed schemes can reach spectral precision in space, and in time can reach second‐order, fourth‐order, and sixth‐order accuracy, respectively. Moreover, the proposed schemes can conserve the discrete mass and energy to within machine precision. Furthermore, to show the efficiency and accuracy of the proposed methods, the proposed methods are compared with the finite difference methods and the finite volume element method. The results of several numerical experiments are given for the propagation of the single solitary wave, the interaction of two solitary waves and the wave break‐up.  相似文献   

11.
In this paper, we consider a mathematical model describing the two‐phase interaction between water and mud in a water canal when the width of the canal is small compared with its depth. The mud is treated as a non‐Newtonian fluid, and the interface between the mud and fluid is allowed to move under the influence of gravity and surface tension. We reduce the mathematical formulation, for small boundary and initial data, to a fully nonlocal and nonlinear problem and prove its local well‐posedness by using abstract parabolic theory. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
In this work, we study coexistence states for a Lotka‐Volterra symbiotic system with cross‐diffusion under homogeneous Dirichlet boundary conditions. By using topological degree theory and bifurcation theory, we prove the existence and multiplicity of positive solutions under certain conditions on the parameters. Asymptotic behaviors of positive solutions are respectively studied as the cross‐diffusion coefficient tends to infinity and the interaction rate tends to zero. Finally, we compare our results with those of the Lotka‐Volterra predator and competition systems.  相似文献   

13.
We study numerically the semi‐classical limit for three‐coupled long wave–short wave interaction equations. The Fourier–Galerkin semi‐discretization is proved to be spectrally convergent in an appropriate energy space. We propose a split‐step Fourier method in the semi‐classical regime with the discussion of the meshing strategy, which is necessary to obtain correct numerical solution. Plane wave solution with weak and strong initial phases, solitary wave solution and Gaussian solution are considered to investigate the semi‐classical limit.  相似文献   

14.
We study the propagation of nonlinear waves in a Hall‐magnetohydrodynamic model. An asymptotic method is used to derive the Gardner‐Burgers equation for fast magnetosonic waves; here, the flux function is nonconvex with both quadratic and cubic nonlinearities, and the evolution equation involves both second‐ and third‐order derivatives representing diffusion and dispersion terms, respectively. Effects of Hall parameter are discussed on the evolution of waves and their interaction by solving a pair of Riemann problems both analytically and numerically. It is shown that the Hall parameter is responsible for shock splitting—a phenomenon that is completely absent in ideal magnetohydrodynamic; indeed, the Hall parameter plays a significant role in deciding about the structure of the solution that involves undercompressive shocks and their interaction with refracted waves and the Lax shocks. It is found that increasing Hall parameter means increasing dispersion that triggers the physical mechanism causing speed and strength of an undercompressive shock to increase and the wave‐fan width to decrease; numerical solutions substantiate these features predicted by the analytical solution.  相似文献   

15.
We study the ultra‐relativistic Euler equations for an ideal gas, which is a system of nonlinear hyperbolic conservation laws. We first analyze the single shocks and rarefaction waves and solve the Riemann problem in a constructive way. Especially, we develop an own parametrization for single shocks, which will be used to derive a new explicit shock interaction formula. This shock interaction formula plays an important role in the study of the ultra‐relativistic Euler equations. One application will be presented in this paper, namely, the construction of explicit solutions including shock fronts, which gives an interesting example for the non‐backward uniqueness of our hyperbolic system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
This article addresses the current state of the mathematics education system in the United States and provides a possible solution to the contributing issues. As a result of lower performance in primary mathematics, American students are not acquiring the necessary quantitative literacy skills to become successful adults. This study analyzed the impact of the Food, Math, and Science Teaching Enhancement Resource (FoodMASTER) Intermediate curriculum on fourth‐grade students' mathematics knowledge. The curriculum is a part of the FoodMASTER Initiative, which is a compilation of programs utilizing food, a familiar and necessary part of everyday life, as a tool to teach mathematics and science. Students exposed to the curriculum completed a 20‐item researcher‐developed mathematics knowledge exam (intervention n = 288; control n = 194). Overall, the results showed a significant increase in mathematics knowledge from pretest to posttest. These findings suggest that the food‐based science activities provided the students with the context in which to apply mathematical concepts to an everyday experience. Therefore, the FoodMASTER approach was successful at improving students' mathematics knowledge while building a foundation for becoming quantitatively literate adults.  相似文献   

17.
Advice‐giving about personal problems is a common form of human interaction. However, an open question is whether there is an abstract and general logic that explains how advice‐giving works. In this study, we addressed this question from the perspective of dynamical systems. We measured the nonlinear dynamics of advice‐giving by using recurrence quantification analysis. Analyzing 600 texts of request for advice and the advice given, our results uncover a typical logic of advice‐giving, and suggest that advice‐giving may be understood as a dynamic manipulation of perspective‐taking. © 2009 Wiley Periodicals, Inc. Complexity 2009  相似文献   

18.
A reaction‐diffusion two‐predator‐one‐prey system with prey‐taxis describes the spatial interaction and random movement of predator and prey species, as well as the spatial movement of predators pursuing preys. The global existence and boundedness of solutions of the system in bounded domains of arbitrary spatial dimension and any small prey‐taxis sensitivity coefficient are investigated by the semigroup theory. The spatial pattern formation induced by the prey‐taxis is characterized by the Turing type linear instability of homogeneous state; it is shown that prey‐taxis can both compress and prompt the spatial patterns produced through diffusion‐induced instability in two‐predator‐one‐prey systems.  相似文献   

19.
Elena Gavrilova 《PAMM》2004,4(1):524-525
A rigid rectangular parallelepiped tank is filled with a compressible and inviscid fluid as a part of one of its walls is a thin linearly elastic rectangular plate. The problem about the determination of the nonstationary vibrations of the received fluidstructure interaction system is considered. The Laplace transforms, the method of Bubnov‐Galerkin and the method of the crossed strips of G. Warburton are amalgamated to create some fast convergent method to investigate the dynamic behavior of the fluid‐structure interaction system under consideration in the cases of arbitrary supporting conditions of the plate. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
ABSTRACT. In this paper we report the use of an individual‐based model of predator‐prey interaction to explore the effects of “within generational” and ‘between generational’ updating of a system level variable. We also report the importance of diversity within the simulated populations. Our findings support those of Grimm and Uchmánski [1994] in regard to the importance of the timing of system level variables, and support Grimm and Uchmañski and others in regard to the importance of the level of diversity across the population. The significance of these findings is emphasized by the fundamental differences between our model and that of Grimm and Uchmánski in regard to the assumptions made about resource flow in the system. This paper was presented at the 2004 Research Modeling Association World Conference on Natural Resource Modeling in Melbourne, Australia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号