首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biotransformation of (±)‐threo‐7,8‐dihydroxy(7,8‐2H2)tetradecanoic acids (threo‐(7,8‐2H2)‐ 3 ) in Saccharomyces cerevisiae afforded 5,6‐dihydroxy(5,6‐2H2)dodecanoic acids (threo‐(5,6‐2H2)‐ 4 ), which were converted to (5S,6S)‐6‐hydroxy(5,6‐2H2)dodecano‐5‐lactone ((5S,6S)‐(5,6‐2H2)‐ 7 ) with 80% e.e. and (5S,6S)‐5‐hydroxy(5,6‐2H2)dodecano‐6‐lactone ((5S,6S)‐5,6‐2H2)‐ 8 ). Further β‐oxidation of threo‐(5,6‐2H2)‐ 4 yielded 3,4‐dihydroxy(3,4‐2H2)decanoic acids (threo‐(3,4‐2H2)‐ 5 ), which were converted to (3R,4R)‐3‐hydroxy(3,4‐2H2)decano‐4‐lactone ((3R,4R)‐ 9 ) with 44% e.e. and converted to 2H‐labeled decano‐4‐lactones ((4R)‐(3‐2H1)‐ and (4R)‐(2,3‐2H2)‐ 6 ) with 96% e.e. These results were confirmed by experiments in which (±)‐threo‐3,4‐dihydroxy(3,4‐2H2)decanoic acids (threo‐(3,4‐2H2)‐ 5 ) were incubated with yeast. From incubations of methyl (5S,6S)‐ and (5R,6R)‐5,6‐dihydroxy(5,6‐2H2)dodecanoates ((5S,6S)‐ and (5R,6R)‐(5,6‐2H2)‐ 4a ), the (5S,6S)‐enantiomer was identified as the precursor of (4R)‐(3‐2H1)‐ and (2,3‐2H2)‐ 6 ). Therefore, (4R)‐ 6 is synthesized from (3S,4S)‐ 5 by an oxidation/keto acid reduction pathway involving hydrogen transfer from C(4) to C(2). In an analogous experiment, methyl (9S,10S)‐9,10‐dihydroxyoctadecanoate ((9S,10S)‐ 10a ) was metabolized to (3S,4S)‐3,4‐dihydroxydodecanoic acid ((3S,4S)‐ 15 ) and converted to (4R)‐dodecano‐4‐lactone ((4R)‐ 18 ).  相似文献   

2.
A series of chiral pentane‐2,4‐diyl‐based thioether‐amine ligands [ 4 and 5 ; (R,S)‐ and (S,S)‐R1SCH(CH3)CH2CH(CH3)NHR2, respectively, where 4a R1 = iPr, R2 = Ph; 4b R1 = tBu, R2 = Ph; 4c R1 = 1‐Ad, R2 = Ph; 5a R1 = iPr, R2 = Ph; 5b R1 = tBu, R2 = Ph; 5c R1 = 1‐Ad, R2 = Ph; 5d R1 = iPr, R2 = 4‐MeOC6H4; 5e R1 = iPr, R2 = 4‐MeC6H4; 5f R1 = iPr, R2 = 3,5‐Me2C6H3] with stereogenic S‐ and N‐donor atoms has been prepared starting from cyclic sulfates via optically pure γ‐aminoalcohol or 2,4‐dimethylazetidine intermediates. The synthesis of the novel diastereomerically related ligand sets 4 and 5 was accomplished starting from the same source of chirality. The modular ligand structure and the novel synthetic strategies developed for their synthesis allowed the easy modification of the ligands’ (i) S‐ and (ii) N‐substituents, as well as (iii) the relative stereochemistry within the ligand backbone. Six‐membered [Pd(N,S)Cl2]‐type chelate complexes of the diastereomerically related ligands 4a and 5a were synthesized and characterized by X‐ray crystallography in the solid phase, by density functional theory calculations and in solution by NMR spectroscopy. The coordination of 5a resulted in the formation of a single chair conformation by the stereospecific locking of both stereolabile (N and S) donor atoms. In contrast, compound 4a forms rapidly equilibrating palladium species due to the fast inversion of the sulfur donor. Ligands with stereochemically fixed donor atoms provided robust and efficient catalytic systems that can be effectively applied in alkylene carbonates as green reaction media. Remarkably, the phosphine‐free catalysts are air‐stable, and at room temperature in the presence of moisture gave excellent ee’s (up to 93%) in asymmetric allylation processes thanks to the double stereoselective coordination.  相似文献   

3.
The chemical synthesis of deuterated isomeric 6,7‐dihydroxydodecanoic acid methyl esters 1 and the subsequent metabolism of esters 1 and the corresponding acids 1a in liquid cultures of the yeast Saccharomyces cerevisiae was investigated. Incubation experiments with (6R,7R)‐ or (6S,7S)‐6,7‐dihydroxy(6,7‐2H2)dodecanoic acid methyl ester ((6R,7R)‐ or (6S,7S)‐(6,7‐2H2)‐ 1 , resp.) and (±)‐threo‐ or (±)‐erythro‐6,7‐dihydroxy(6,7‐2H2)dodecanoic acid ((±)‐threo‐ or (±)‐erythro‐(6,7‐2H2)‐ 1a , resp.) elucidated their metabolic pathway in yeast (Tables 1–3). The main products were isomeric 2H‐labeled 5‐hydroxydecano‐4‐lactones 2 . The absolute configuration of the four isomeric lactones 2 was assigned by chemical synthesis via Sharpless asymmetric dihydroxylation and chiral gas chromatography (Lipodex ® E). The enantiomers of threo‐ 2 were separated without derivatization on Lipodex ® E; in contrast, the enantiomers of erythro‐ 2 could be separated only after transformation to their 5‐O‐(trifluoroacetyl) derivatives. Biotransformation of the methyl ester (6R,7R)‐(6,7‐2H2)‐ 1 led to (4R,5R)‐ and (4S,5R)‐(2,5‐2H2)‐ 2 (ratio ca. 4 : 1; Table 2). Estimation of the label content and position of (4S,5R)‐(2,5‐2H2)‐ 2 showed 95% label at C(5), 68% label at C(2), and no 2H at C(4) (Table 2). Therefore, oxidation and subsequent reduction with inversion at C(4) of 4,5‐dihydroxydecanoic acid and transfer of 2H from C(4) to C(2) is postulated. The 5‐hydroxydecano‐4‐lactones 2 are of biochemical importance: during the fermentation of Streptomyces griseus, (4S,5R)‐ 2 , known as L‐factor, occurs temporarily before the antibiotic production, and (?)‐muricatacin (=(4R,5R)‐5‐hydroxy‐heptadecano‐4‐lactone), a homologue of (4R,5R)‐ 2 , is an anticancer agent.  相似文献   

4.
Epoxides of fatty acids are hydrolyzed by epoxide hydrolases (EHs) into dihydroxy fatty acids which are of particular interest in the mammalian leukotriene pathway. In the present report, the analysis of the configuration of dihydroxy fatty acids via their respective hydroxylactones is described. In addition, the biotransformation of (±)‐erythro‐7,8‐ and ‐3,4‐dihydroxy fatty acids in the yeast Saccharomyces cerevisiae was characterized by GC/EI‐MS analysis. Biotransformation of chemically synthesized (±)‐erythro‐7,8‐dihydroxy(7,8‐2H2)tetradecanoic acid ((±)‐erythro‐ 1 ) in the yeast S. cerevisiae resulted in the formation of 5,6‐dihydroxy(5,6‐2H2)dodecanoic acid ( 6 ), which was lactonized into (5S,6R)‐6‐hydroxy(5,6‐2H2)dodecano‐5‐lactone ((5S,6R)‐ 4 ) with 86% ee and into erythro‐5‐hydroxy(5,6‐2H2)dodecano‐6‐lactone (erythro‐ 8 ). Additionally, the α‐ketols 7‐hydroxy‐8‐oxo(7‐2H1)tetradecanoic acid ( 9a ) and 8‐hydroxy‐7‐oxo(8‐2H1)tetradecanoic acid ( 9b ) were detected as intermediates. Further metabolism of 6 led to 3,4‐dihydroxy(3,4‐2H2)decanoic acid ( 2 ) which was lactonized into 3‐hydroxy(3,4‐2H2)decano‐4‐lactone ( 5 ) with (3R,4S)‐ 5 =88% ee. Chemical synthesis and incubation of (±)‐erythro‐3,4‐dihydroxy(3,4‐2H2)decanoic acid ((±)‐erythro‐ 2 ) in yeast led to (3S,4R)‐ 5 with 10% ee. No decano‐4‐lactone was formed from the precursors 1 or 2 by yeast. The enantiomers (3S,4R)‐ and (3R,4S)‐3,4‐dihydroxy(3‐2H1)nonanoic acid ((3S,4R)‐ and (3R,4S)‐ 3 ) were chemically synthesized and comparably degraded by yeast without formation of nonano‐4‐lactone. The major products of the transformation of (3S,4R)‐ and (3R,4S)‐ 3 were (3S,4R)‐ and (3R,4S)‐3‐hydroxy(3‐2H1)nonano‐4‐lactones ((3S,4R)‐ and (3R,4S)‐ 7 ), respectively. The enantiomers of the hydroxylactones 4, 5 , and 7 were chemically synthesized and their GC‐elution sequence on Lipodex® E chiral phase was determined.  相似文献   

5.
Novel optically active substituted acetylenes HC? CCH2CR1(CO2CH3)NHR2 [(S)‐/(R)‐ 1 : R1 = H, R2 = Boc, (S)‐ 2 : R1 = CH3, R2 = Boc, (S)‐ 3 : R1 = H, R2 = Fmoc, (S)‐ 4 : R1 = CH3, R2 = Fmoc (Boc = tert‐butoxycarbonyl, Fmoc = 9‐fluorenylmethoxycarbonyl)] were synthesized from α‐propargylglycine and α‐propargylalanine, and polymerized with a rhodium catalyst to provide the polymers with number‐average molecular weights of 2400–38,900 in good yields. Polarimetric, circular dichroism (CD), and UV–vis spectroscopic analyses indicated that poly[(S)‐ 1 ], poly[(R)‐ 1 ], and poly[(S)‐ 4 ] formed predominantly one‐handed helical structures both in polar and nonpolar solvents. Poly[(S)‐ 1a ] carrying unprotected carboxy groups was obtained by alkaline hydrolysis of poly[(S)‐ 1 ], and poly[(S)‐ 4b ] carrying unprotected amino groups was obtained by removal of Fmoc groups of poly[(S)‐ 4 ] using piperidine. Poly[(S)‐ 1a ] and poly[(S)‐ 4b ] also exhibited clear CD signals, which were different from those of the precursors, poly[(S)‐ 1 ] and poly[(S)‐ 4 ]. The solution‐state IR measurement revealed the presence of intramolecular hydrogen bonding between the carbamate groups of poly[(S)‐ 1 ] and poly[(S)‐ 1a ]. The plus CD signal of poly[(S)‐ 1a ] turned into minus one on addition of alkali hydroxides and tetrabutylammonium fluoride, accompanying the red‐shift of λmax. The degree of λmax shift became large as the size of cation of the additive. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
Two pairs of enantiomeric CoII compounds with formulas [Co23‐OH)(cyamp)(CnH2n+1COO)] (cyampH2=(S)‐ or (R)‐[(1‐cyclohexylethyl)amino]methylphosphonic acid; n=1 ( 1 ); n=7 ( 2 )) were synthesized. The structures of S‐ 1 and S‐ 2 were determined by single‐crystal structural analyses. Both crystallize in a monoclinic chiral space group P21, and exhibit layered structures in which the Δ‐type chains of corner‐sharing Co33‐OH) triangles are connected by the phosphonate groups. The interlayer spaces are filled with the organic groups of the phosphonate and carboxylate ligands. Therefore, the distances between the layers can be manipulated by the length of the alkyl chain of the carboxylate ligands, from 14.6 Å in 1 to 20.0 Å in 2 . Magnetic studies were carried out for compounds S‐ 1 and S‐ 2 . Both show metamagnetism at low temperature. The critical field decreases with increasing interlayer distance from 8.18 kOe for S‐ 1 to 7.01 kOe for S‐ 2 at 1.8 K. The optical properties were also studied.  相似文献   

7.
The peculiar and highly diffusive odor signal of flowering clary‐sage plants (Salvia sclarea L.) was identified to derive from trace amounts of 1‐methoxyhexane‐3‐thiol ( 1 ) by mass‐spectrometry analysis and confirmed by comparison with synthetic racemic thiol (±)‐ 1 . The enantiomers (S)‐ and (R)‐ 1 were prepared by enantioselective synthesis, and the absolute configuration of (S)‐ 1 was fully corroborated by X‐ray‐diffraction analysis of the crystalline thioester (1′S,1S)‐ 2 . Compound (S)‐ 1 is one of the most powerful odorants known, with a detection threshold of 0.04⋅10−3 ng/l air, and is, with its herbaceous‐green, alliaceous, and perspiration profile, key to the fragrance of clary‐sage flowers and of the freshly distilled essential oil. As a consequence of its unique odor, 1 was also suspected to be part of the volatiles of a Ruta species where it was subsequently identified together with its homologue, 1‐methoxyheptane‐3‐thiol ( 3 ), 1‐methoxy‐4‐methylpentane‐3‐thiol ( 4 ), and the known 4‐methoxy‐2‐methylbutane‐2‐thiol ( 5 ). The syntheses of (±)‐ 3 and (±)‐ 4 as well as of the enantiomer (R)‐ 4 are described. In both natural fractions, the ratio (S)‐ 1 /(R)‐ 1 was slightly in favor of the (S)‐enantiomer. Natural 4 has (R)‐configuration.  相似文献   

8.
Alkynyl gold(I) metallaligands [(AuC≡Cbpyl)2(μ‐diphosphine)] (bpyl=2,2′‐bipyridin‐5‐yl; diphosphine=Ph2P(CH2)nPPh2, [n=3 (LPr), 4 (LBu), 5 (LPent), 6 (LHex)], dppf (LFc), Binap (LBinap) and Diop (LDiop)) react with MX2 (M=Fe, Zn, X=ClO4; M=Co, X=BF4) to give triple helicates [M2(LR)3]X4. These complexes, except those containing the semirigid LBinap metallaligand, present similar hydrodynamic radii (determined by diffusion NMR spectroscopy measurements) and a similar pattern in the aromatic region of their 1H NMR spectra, which suggests that in solution they adopt a compact structure where the long and flexible organometallic strands are folded. The diastereoselectivity of the self‐assembly process was studied by using chiral metallaligands, and the absolute configuration of the iron(II) complexes with LBinap and LDiop was determined by circular dichroism spectroscopy (CD). Thus, (R)‐LBinap or (S)‐LBinap specifically induce the formation of (Δ,Δ)‐[Fe2((R)‐LBinap)3](ClO4)4 or (Λ,Λ)‐[Fe2((S)‐LBinap)3](ClO4)4, respectively, whereas (R,R)‐ or (S,S)‐LDiop give mixtures of the ΔΔ‐ and ΛΛ‐diastereomers. The ΔΔ helicate diastereomer is dominant in the reaction of FeII with (R,R)‐LDiop, whereas the ΛΛ isomer predominates in the analogous reaction with (S,S)‐LDiop. The photophysical properties of the new dinuclear alkynyl complexes and the helicates have been studied. The new metallaligands and the [Zn2(LR)3]4+ helicates present luminescence from [π→π*] excited states mainly located in the C≡Cbpyl units.  相似文献   

9.
The utility of the chiral [Ti(μ‐O)(salen)]2 complexes (R)‐ and (S)‐ 1 (H2salen was prepared from (R,R)‐ or (S,S)‐cyclohexane‐1,2‐diamine and 3,5‐di(tert‐butyl)‐2‐hydroxybenzaldehyde) as catalysts for the asymmetric addition of KCN and Ac2O to aldehydes to produce O‐acetylcyanohydrins was investigated. It was shown that the complexes were active at a substrate/catalyst ratio of 100 : 1 and produced the O‐protected cyanohydrins with ee in the range of 60–92% at −40°. Other complexes, [Ti2(AcO)2(μ‐O)(salen)2] ((R)‐ 4 ) and [Ti(CF3COO)2(salen)] ((R)‐ 5 ), were prepared from (R)‐ 1 by treatment with different amounts of Ac2O and (CF3CO)2O, and their catalytic activities were tested under the same conditions. The efficiency of (R)‐ 4 was found to be even greater than that of (R)‐ 1 , whereas (R)‐ 5 was inactive. The synthesis of the corresponding salen complexes of VIV and VV, [V(O)(salen)] ((R)‐ 2 ) and [V(O)(salen)(H2O)] [S(O)3OEt] ((R)‐ 3 ), was elaborated, and their X‐ray crystal structures were determined. The efficiency of (R)‐ 3 was sufficient to produce O‐acetyl derivatives of aromatic cyanohydrins with ee in the range of 80–91% at −40°.  相似文献   

10.
The two dinuclear IrI complexes [Ir2(μ‐Cl)2 {(R)‐(S)‐PPF‐PPh2}2] ( 1 ; (R)‐(S)‐PPF‐PPh2=(S)‐1‐(diphenylphosphino)‐2‐[(R)‐1‐(diphenylphosphino)ethyl]ferrocene and [Ir2(μ‐Cl)2{(R)‐binap}2] ( 3 ; (R)‐binap=(R)‐[1,1′‐binaphthalene]‐2,2′‐diylbis[diphenylphosphine]) smoothly react with 4 equiv. of the lithium salt of aniline to afford the new bis(anilido)iridate(I) (=bis(benzenaminato)iridate(1‐)) complexes Li[Ir(NHPh)2{(R)‐(S)‐PPF‐PPh2}] ( 4 ) and Li[Ir(NHPh)2{(R)‐binap}] ( 5 ), respectively. The anionic complexes 4 and 5 react upon protonolysis to give the dinuclear aminato‐bridged derivatives [Ir2(μ‐NHPh)2{(R)‐(S)‐PPF‐PPh2}2] ( 6 ) and [Ir2(μ‐NHPh)2{(R)‐binap}2] ( 7 ), which were characterized by X‐ray crystallography. None of the new complexes 4 – 7 shows catalytic activity in the hydroamination of olefins.  相似文献   

11.
The reactions of 4,4′‐dimethoxythiobenzophenone ( 1 ) with (S)‐2‐methyloxirane ((S)‐ 2 ) and (R)‐2‐phenyloxirane ((R)‐ 6 ) in the presence of a Lewis acid such as BF3?Et2O, ZnCl2, or SiO2 in dry CH2Cl2 led to the corresponding 1 : 1 adducts, i.e., 1,3‐oxathiolanes (S)‐ 3 with Me at C(5), and (S)‐ 7 and (R)‐ 8 with Ph at C(4) and C(5), respectively. A 1 : 2 adduct, 1,3,6‐dioxathiocane (4S,8S)‐ 4 and 1,3‐dioxolane (S)‐ 9 , respectively, were formed as minor products (Schemes 3 and 5, Tables 1 and 2). Treatment of the 1 : 1 adduct (S)‐ 3 with (S)‐ 2 and BF3?Et2O gave the 1 : 2 adduct (4S,8S)‐ 4 (Scheme 4). In the case of the enolized thioketone 1,3‐diphenylprop‐1‐ene‐2‐thiol ( 10 ) with (S)‐ 2 and (R)‐ 6 in the presence of SiO2, the enesulfanyl alcohols (1′Z,2S)‐ 11 and (1′E,2S)‐ 11 , and (1′Z,2S)‐ 13 , (1′E,2S)‐ 13 , (1′Z,1R)‐ 15 , and (1′E,1R)‐ 15 , respectively, as well as a 1,3‐oxathiolane (S)‐ 14 were formed (Schemes 6 and 8). In the presence of HCl, the enesulfanyl alcohols (1′Z,2S)‐ 11 , (1′Z,2S)‐ 13 , (1′E,2S)‐ 13 , (1′Z,1R)‐ 15 , and (1′E,1R)‐ 15 cyclize to give the corresponding 1,3‐oxathiolanes (S)‐ 12 , (S)‐ 14 , and (R)‐ 16 , respectively (Schemes 7, 9, and 10). The structures of (1′E,2S)‐ 11 , (S)‐ 12 , and (S)‐ 14 were confirmed by X‐ray crystallography (Figs. 13). These results show that 1,3‐oxathiolanes can be prepared directly via the Lewis acid‐catalyzed reactions of oxiranes with non‐enolizable thioketones, and also in two steps with enolized thioketones. The nucleophilic attack of the thiocarbonyl or enesulfanyl S‐atom at the Lewis acid‐complexed oxirane ring proceeds with high regio‐ and stereoselectivity via an Sn 2‐type mechanism.  相似文献   

12.
The 2,2′‐methylenebis[furan] ( 1 ) was converted to 1‐{(4R,6S))‐6‐[(2R)‐2,4‐dihydroxybutyl]‐2,2‐dimethyl‐1,3‐dioxan‐4‐yl}‐3‐[(2R,4R)‐tetrahydro‐4,6‐dihydroxy‐2H‐pyran‐2‐yl)propan‐2‐one ((+)‐ 18 ) and its (4S)‐epimer (?)‐ 19 with high stereo‐ and enantioselectivity (Schemes 13). Under acidic methanolysis, (+)‐ 18 yielded a single spiroketal, (3R)‐4‐{(1R,3S,4′R,5R,6′S,7R)‐3′,4′,5′,6′‐tetrahydro‐4′‐hydroxy‐7‐methoxyspiro[2,6‐dioxabicyclo[3.3.1]nonane‐3,2′‐[2H]pyran]‐6′‐yl}butane‐1,3‐diol ((?)‐ 20 ), in which both O‐atoms at the spiro center reside in equatorial positions, this being due to the tricyclic nature of (?)‐ 20 (methyl pyranoside formation). Compound (?)‐ 19 was converted similarly into the (4′S)‐epimeric tricyclic spiroketal (?)‐ 21 that also adopts a similar (3S)‐configuration and conformation. Spiroketals (?)‐ 20 , (?)‐ 21 and analog (?)‐ 23 , i.e., (1R,3S,4′R,5R,6′R)‐3′,4′,5′,6′‐tetrahydro‐6′‐[(2S)‐2‐hydroxybut‐3‐enyl]‐7‐methoxyspiro[2,6‐dioxabicyclo[3.3.1]nonane‐3,2′‐[2H]pyran]‐4′‐ol, derived from (?)‐ 20 , were assayed for their cytotoxicity toward murine P388 lymphocytic leukemia and six human cancer cell lines. Only racemic (±)‐ 21 showed evidence of cancer‐cell‐growth inhibition (P388, ED50: 6.9 μg/ml).  相似文献   

13.
The title compounds, trans‐dichloro­bis[(1R,2R,3R,5S)‐(−)‐2,6,6‐trimethyl­bicyclo­[3.1.1]heptan‐3‐amine]palladium(II), [PdCl2(C10H19N)2], and trans‐dichloro­bis[(1S,2S,3S,5R)‐(+)‐2,6,6‐trimethyl­bicyclo­[3.1.1]heptan‐3‐amine]palladium(II) hemihydrate, [PdCl2(C10H19N)2]·0.5H2O, present different arrangements of the amine ligands coordinated to PdII, viz. antiperiplanar in the former case and (−)anticlinal in the latter. The hemihydrate is an inclusion compound, with a Pd coordination complex and disordered water mol­ecules residing on crystallographic twofold axes. The crystal structure for the hemihydrate includes a short Pd⋯Pd separation of 3.4133 (13) Å.  相似文献   

14.
Two pairs of enantiomeric compounds with formulas (S)‐ or (R)‐Co3(ppap)2(4,4′‐bpy)2(H2O)2 ? 4 H2O [(S)‐ 1 or (R)‐ 1 ], (S)‐ or (R)‐Co3(ppap)2(4,4′‐bpy)2(H2O)2 ? 3 H2O [(S)‐ or (R)‐ 2 ), and related racemic compound Co3(ppap)2(4,4′‐bpy)2(H2O)2 ? 4 H2O (rac‐ 3 ; 4,4′‐bpy=4,4′‐bipyridine, H3ppap=3‐phenyl‐2‐[(phosphonomethyl)amino]propanoic acid) are reported. Compounds 1 and rac‐ 3 show identical three‐dimensional framework structures, whereas compounds 2 have two‐dimensional layer structures. Compounds 1 and 2 are catenation isomers, formation of which is controlled solely by the pH of the reaction mixtures, whereas the formation of isomeric compounds 1 and rac‐ 3 is controlled purely by the chirality of the phosphonate ligand. The magnetic properties of fully dehydrated (S)‐ 1 , (S)‐ 2 , and rac‐ 3 are highly dependent on both structure and chirality.  相似文献   

15.
The heterospirocyclic N‐methyl‐N‐phenyl‐5‐oxa‐1‐azaspiro[2.4]hept‐1‐e n‐2‐amine (6 ) and N‐(5‐oxa‐1‐azaspiro[2.4]hept‐1‐en‐2‐yl)‐(S)‐proline methyl ester ( 7 ) were synthesized from the corresponding heterocyclic thiocarboxamides 12 and 10 , respectively, by consecutive treatment with COCl2, 1,4‐diazabicyclo[2.2.2]octane, and NaN3 (Schemes 1 and 2). The reaction of these 2H‐azirin‐3‐amines with thiobenzoic and benzoic acid gave the racemic benzamides 13 and 14 , and the diastereoisomeric mixtures of the N‐benzoyl dipeptides 15 and 16 , respectively (Scheme 3). The latter were separated chromatographically. The configurations and solid‐state conformations of all six benzamides were determined by X‐ray crystallography. With the aim of examining the use of the new synthons in peptide synthesis, the reactions of 7 with Z‐Leu‐Aib‐OH to yield a tetrapeptide 17 (Scheme 4), and of 6 with Z‐Ala‐OH to give a dipeptide 18 (Scheme 5) were performed. The resulting diastereoisomers were separated by means of MPLC or HPLC. NMR Studies of the solvent dependence of the chemical shifts of the NH resonances indicate the presence of an intramolecular H‐bond in 17 . The dipeptides (S,R)‐ 18 and (S,S)‐ 18 were deprotected at the N‐terminus and were converted to the crystalline derivatives (S,R)‐ 19 and (S,S)‐ 19 , respectively, by reaction with 4‐bromobenzoyl chloride (Scheme 5). Selective hydrolysis of (S,R)‐ 18 and (S,S)‐ 18 gave the dipeptide acids (R,S)‐ 20 and (S,S)‐ 20 , respectively. Coupling of a diastereoisomeric mixture of 20 with H‐Phe‐OtBu led to the tripeptides 21 (Scheme 5). X‐Ray crystal‐structure determinations of (S,R)‐ 19 and (S,S)‐ 19 allowed the determination of the absolute configurations of all diastereoisomers isolated in this series.  相似文献   

16.
Optical resolution of racemic 5‐oxo‐1‐phenyl‐pyrazolidine‐3‐carboxylic acid 2 with L‐amino acid methyl ester via the diastereomers formation was investigated. Treatment of racemic 5‐oxo‐1‐phenyl‐pyrazolidine‐3‐carboxylic acid 2 with L‐valine methyl ester gave diastereomers with a total yield of 86%. The diastereomeric dipeptides can be easily separated by flash column chromatography. Acidic cleavage of the derived diastereomers gave both the optically pure (+)‐(R)‐ and (‐)‐(S)‐5‐oxo‐1‐phenyl‐pyrazolidine‐3‐carboxylic acid ((+)‐(R)‐ 2 and (‐)‐(S)‐ 2 ) with a total yield of 94% and 95%, respectively.  相似文献   

17.
Chiral cyclic α,α‐disubstituted amino acids, (3S,4S)‐ and (3R,4R)‐1‐amino‐3,4‐(dialkoxy)cyclopentanecarboxylic acids ((S,S)‐ and (R,R)‐Ac5cdOR; R: methyl, methoxymethyl), were synthesized from dimethyl L ‐(+)‐ or D ‐(?)‐tartrate, and their homochiral homoligomers were prepared by solution‐phase methods. The preferred secondary structure of the (S,S)‐Ac5cdOMe hexapeptide was a left‐handed (M) 310 helix, whereas those of the (S,S)‐Ac5cdOMe octa‐ and decapeptides were left‐handed (M) α helices, both in solution and in the crystal state. The octa‐ and decapeptides can be well dissolved in pure water and are more α helical in water than in 2,2,2‐trifluoroethanol solution. The left‐handed (M) helices of the (S,S)‐Ac5cdOMe homochiral homopeptides were exclusively controlled by the side‐chain chiral centers, because the cyclic amino acid (S,S)‐Ac5cdOMe does not have an α‐carbon chiral center but has side‐chain γ‐carbon chiral centers.  相似文献   

18.
Enzymatic resolution of racemic 1,4,5,6‐tetrachloro‐2‐(hydroxymethyl)‐7,7‐dimethoxybicyclo[2.2.1]hept‐5‐ene (rac‐ 1 ) using various lipases in vinyl acetate as acetyl source was studied. The obtained enantiomerically enriched (+)‐(1,4,5,6‐tetrachloro‐7,7‐dimethoxybicyclo[2.2.1]hept‐5‐en‐2‐yl)methyl acetate ((+)‐ 2 ; 94% ee), upon treatment with Na in liquid NH3, followed by Amberlyst‐15 resin in acetone, provided (−)‐5‐(hydroxymethyl)bicyclo[2.2.1]hept‐2‐en‐7‐one ((−)‐ 7 ), which is a valuable precursor for the synthesis of carbasugar derivatives. Subsequent Baeyer–Villiger oxidation afforded a nonseparable mixture of bicyclic lactones, which was subjected to LiAlH4 reduction and then acetylation. The resultant compounds (−)‐ 11 and (+)‐ 12 were submitted to a cis‐hydroxylation reaction, followed by acetylation, to afford the novel carbasugar derivatives (1S,2R,3S,4S,5S)‐4,5‐bis(acetoxymethyl)cyclohexane‐1,2,3‐triyl triacetate ((−)‐( 13 )) and (1R,3R,4R,6R)‐4,6‐bis(acetoxymethyl)cyclohexane‐1,2,3‐triyl triacetate ((−)‐( 14 )), respectively, with pseudo‐C2‐symmetric configuration. The absolute configuration of enantiomerically enriched unreacted alcohol (−)‐ 1 (68% ee) was determined by X‐ray single‐crystal analysis by anchoring optically pure (R)‐1‐phenylethanamine. Based on the configurational correlation between (−)‐ 1 and (+)‐ 2 , the absolute configuration of (+)‐ 2 was determined as (1R,2R,4S).  相似文献   

19.
Treatment of the thioether‐substituted secondary phosphanes R2PH(C6H4‐2‐SR1) [R2=(Me3Si)2CH, R1=Me ( 1PH ), iPr ( 2PH ), Ph ( 3PH ); R2=tBu, R1=Me ( 4PH ); R2=Ph, R1=Me ( 5PH )] with nBuLi yields the corresponding lithium phosphanides, which were isolated as their THF ( 1 – 5Pa ) and tmeda ( 1 – 5Pb ) adducts. Solid‐state structures were obtained for the adducts [R2P(C6H4‐2‐SR1)]Li(L)n [R2=(Me3Si)2CH, R1=nPr, (L)n=tmeda ( 2Pb ); R2=(Me3Si)2CH, R1=Ph, (L)n=tmeda ( 3Pb ); R2=Ph, R1=Me, (L)n=(THF)1.33 ( 5Pa ); R2=Ph, R1=Me, (L)n=([12]crown‐4)2 ( 5Pc )]. Treatment of 1PH with either PhCH2Na or PhCH2K yields the heavier alkali metal complexes [{(Me3Si)2CH}P(C6H4‐2‐SMe)]M(THF)n [M=Na ( 1Pd ), K ( 1Pe )]. With the exception of 2Pa and 2Pb , photolysis of these complexes with white light proceeds rapidly to give the thiolate species [R2P(R1)(C6H4‐2‐S)]M(L)n [M=Li, L=THF ( 1Sa , 3Sa – 5Sa ); M=Li, L=tmeda ( 1Sb , 3Sb – 5Sb ); M=Na, L=THF ( 1Sd ); M=K, L=THF ( 1Se )] as the sole products. The compounds 3Sa and 4Sa may be desolvated to give the cyclic oligomers [[{(Me3Si)2CH}P(Ph)(C6H4‐2‐S)]Li]6 (( 3S )6) and [[tBuP(Me)(C6H4‐2‐S)]Li]8 (( 4S )8), respectively. A mechanistic study reveals that the phosphanide–thiolate rearrangement proceeds by intramolecular nucleophilic attack of the phosphanide center at the carbon atom of the substituent at sulfur. For 2Pa / 2Pb , competing intramolecular β‐deprotonation of the n‐propyl substituent results in the elimination of propene and the formation of the phosphanide–thiolate dianion [{(Me3Si)2CH}P(C6H4‐2‐S)]2?.  相似文献   

20.
The lipophilicity of a number of N‐acyl derivatives of trans‐ or cis‐: racemic, (1R,2R)‐ or (1S,2S)‐aminocyclohexanol (1–13) exhibiting anticonvulsant activity was investigated. Their lipophilicity (Rm 0) was determined using reversed‐phase thin‐layer chromatography (RP‐TLC) with mixtures of methanol and water as mobile phases. The partition coefficients of compounds 1–13 (log P) were also calculated using two computer programs (Pallas and Chem DU) and compared with Rm 0. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号