首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Grain refiner is often added to aluminum and magnesium alloys during solidification processing to encourage the development of a fine equiaxed grain structure. Numerical modeling of such processes face the challenge of considering the effect of free floating grains that nucleate on grain refiner particles, are advected in the bulk fluid flow, and eventually coalesce to form a permeable, rigid solid structure. While several models have been developed to consider the advection of solid grains, the attachment of these grains is uniformly treated on a discrete, cell-by-cell basis. In a previous study, channel segregates were observed in the predicted composition field of equiaxed solidification simulations and were found to exhibit an extreme grid dependence. These channels were examined in the present study in detail for two different grain attachment models, one that assumed coalescence occurs at a constant and uniform volume fraction solid, and one that considered the effects of the local solid velocity field. The mechanism of the initiation and propagation of these channels was explored, and their physical relevance considered. It was concluded that these defects were primarily numerical artifacts arising from the discrete nature of the grain attachment models, and therefore, necessarily occurred on the length scale of the grid spacing. Development of an alternative attachment model that avoid this numerical problem is the subject of ongoing research.  相似文献   

2.
The solidified grain structure (macrostructure) of castings is predicted by process simulation using a newly extended front-tracking technique which models the growth of solid dendritic fronts through undercooled liquid during metallic alloy solidification. Such fronts are either constrained, as is the case with directed columnar growth from mould walls, or unconstrained, as is the case for multiple equiaxed growth from individual nucleating particles distributed throughout the liquid. Non-linear latent heat evolution is treated by incorporating the Scheil equation. Thermal conductivity changes with the solid fraction. A log-normal distribution of activation undercooling to initiate free growth from equiaxed nuclei is used, and the routines to deal with such growth followed by impingement of dendritic grains upon one another are verified by comparison with the results of analytical studies of simplified systems. The extensions to the model enable the predictions of equiaxed grain structure and, importantly, the columnar to equiaxed transition in inoculated alloy castings. The model is validated via comparison with experimental results. The front-tracking method is proposed as a suitable formulation for modelling alloy castings that solidify with a dendritic structure, either columnar, equiaxed, or both.  相似文献   

3.
We compared a cellular automaton (CA)–finite element (FE) model and a phase-field (PF)–FE model to simulate equiaxed dendritic growth during the solidification of cubic crystals. The equations of mass and heat transports were solved in the CA–FE model to calculate the temperature field, solute concentration, and the dendritic growth morphology. In the PF–FE model, a PF variable was used to identify solid and liquid phases and another PF variable was considered to determine the evolution of solute concentration. Application to Al–3.0 wt.% Cu alloy illustrates the capability of both CA–FE and PF–FE models in modeling multiple arbitrarily-oriented dendrites in growth of cubic crystals. Simulation results from both models showed quantitatively good agreement with the analytical model developed by Lipton–Glicksman–Kurz (LGK) in the tip growth velocity and the tip equilibrium liquid concentration at a given melt undercooling. The dendrite morphology and computational time obtained from the CA–FE model are compared to those of the PF–FE model and the distinct advantages of both methods are discussed.  相似文献   

4.
A new coupled model in the binary alloy solidification has been developed. The model is based on the cellular automaton (CA) technique to calculate the evolution of the interface governed by temperature, solute diffusion and Gibbs-Thomson effect. The diffusion equation of temperature with the release of latent heat on the solid/liquid (S/L) interface is valid in the entire domain. The temperature diffusion without the release of latent heat and solute diffusion are solved in the entire domain. In the interface cells, the  相似文献   

5.
The following self-similar problem is considered. At the initial instant of time, a phase transformation front starts moving at constant velocity from a certain plane (which will be called a wall or a piston, depending on whether it is assumed to be fixed or movable); at this front, an elastic medium is formed as a result of solidification from a medium without tangential stresses. On the wall, boundary conditions are defined for the components of velocity, stress, or strain. Behind the solidification front, plane nonlinear elastic waves can propagate in the medium formed, provided that the velocities of these waves are less than the velocity of the front. The medium formed is assumed to be incompressible, weakly nonlinear, and with low anisotropy. Under these assumptions, the solution of the self-similar problem is described qualitatively for arbitrary parameters appearing in the statement of the problem. The study is based on the authors’ previous investigation of solidification fronts whose structure is described by the Kelvin–Voigt model of a viscoelastic medium.  相似文献   

6.
A new coupled model in the binary alloy solidification has been developed. The model is based on the cellular automaton (CA) technique to calculate the evolution of the interface governed by temperature, solute diffusion and Gibbs-Thomson effect. The diffusion equation of temperature with the release of latent heat on the solid/liquid (S/L) interface is valid in the entire domain. The temperature diffusion without the release of latent heat and solute diffusion are solved in the entire domain. In the interface cells, the energy and solute conservation, thermodynamic and chemical potential equilibrium are adopted to calculate the temperature, solid concentration, liquid concentration and the increment of solid fraction. Compared with other models where the release of latent heat is solved in implicit or explicit form according to the solid/liquid (S/L) interface velocity, the energy diffusion and the release of latent heat in this model are solved at different scales, i.e. the macro-scale and micro-scale. The variation of solid fraction in this model is solved using several algebraic relations coming from the chemical potential equilibrium and thermodynamic equilibrium which can be cheaply solved instead of the calculation of S/L interface velocity. With the assumption of the solute conservation and energy conservation, the solid fraction can be directly obtained according to the thermodynamic data. This model is natural to be applied to multiple (< 2) spatial dimension case and multiple (< 2) component alloy. The morphologies of equiaxed dendrite are obtained in numerical experiments.  相似文献   

7.
In continuous casting of steel, the control of the solidification front by means of the amount of water sprayed onto the strand is of great practical interest. We study the thermal history in a continuously cast cylindrical billet. The mathematical model is a two-dimensional nonlinear heat equation div[k(u)gradu] = ut subject to water-cooling and heat radiation boundary conditions. We establish existence, uniqueness and stability results for both the temperature field and the solidification front. We study the monotonicity behaviour of the temperature field and show that certain technically easy-to-realize cooling-strategies may generate double liquid fingers at the final stage of solidification. The inverse problem of determining the cooling strategy is an ill-posed problem. We therefore use Tikhonov regularization as a stable and convergent methodfor treating this problem.  相似文献   

8.
A computational study of the effect of stirrer position on fluid flow and solidification in a continuous casting billet mold with in-mold electromagnetic stirring has been carried out. The numerical investigation uses a full coupling method in which alternating magnetic field equations are solved simultaneously with the governing equations of fluid flow and heat transfer. An enthalpy-porosity technique is used for the solidification analysis while the magnetohydrodynamics technique is used for studying the fluid flow behavior under the electromagnetic field. The streamline, liquid fraction, and solid shell thickness at the mold wall have been predicted with and without EMS application at different positions along the length of the mold. Recirculation loops are seen to be formed above and below the stirrer position when fluid flow and electromagnetic field equations were solved, without incorporating the solidification model. Application of the solidification model interestingly resulted in the reduction of the size of the recirculation loops formed. The tangential component of velocity of the fluid near the solidification front, stirring intensity and the effective length of stirring below the stirrer decrease as the stirrer position is moved downwards. Significant changes in characteristics of solid shell formation like delay in initiation of solidification at the mold wall and formation of a gap in the re-solidified shell have been observed with change in stirrer position.  相似文献   

9.
The quality of cereal grains in storage will deteriorate toan unacceptable level if they are not kept dry and cool. Tomodel the drying and cooling process, an accurate knowledgeof the airflow distribution is required. In this paper, theequations used to model the air velocity are analysed. To study the flow of air through a typical drying system forstored grain, a two-dimensional rectangular bin is considered,with a single source of air on the bin floor. Two paths ofstudyare undertaken: the first is a linear analysis for low velocities,and following on from this is a nonlinear approach for largervelocities. The linear analysis is used to study a bin witha semi-infinite height, and the drying pattern is studied inthis bin using the air traverse time. Then bins with a finiteheight are analysed: it is shown that, for tall enough bins,the semi-infinite solution is accurate enough. A perturbationanalysis is used to study the semi-infinite bin when the airvelocity is too large for the linear analysis to be accu rate.It is shown that the effect of the nonlinearity is to move theair away from the high-velocity regions towards the areas oflower velocity.  相似文献   

10.
A cellular automaton to track the solid–liquid interface movement is linked to finite volume computations of solute diffusion to simulate the behavior of dendritic structures in binary alloys during solidification. A significant problem encountered in the CA formulation has been the presence of artificial anisotropy in growth kinetics introduced by a Cartesian CA grid. A new technique to track the interface movement is proposed to model dendritic growth in different crystallographic orientations while reducing the anisotropy due to grid orientation. The model stability with respect to the numerical parameters (cell size and time step) for various operating conditions is examined. A method for generating an operating window in Δt and Δx has been identified, in which the model gives a grid-independent set of results for calculated dendrite tip radius and tip undercooling. Finally, the model is compared to published experimental and analytical results for both directional and equiaxed growth conditions.  相似文献   

11.
A mathematical model to analyse some key aspects of the metal cast process is described involving the filling of the mould by liquid metal and simultaneously, undergoing both cooling and solidification (re-melting) phase change. A computational solution procedure based upon a finite volume discretisation approach, on both structured and unstructured meshes, is described. The overall flow solution procedure is based on the pressure correction algorithm SIMPLE suitably adapted to: (a) solve for the free surface with minimal smearing by the SEA algorithm, and (b) solve for the solidification/melting phase change using an enthalpy conservation algorithm developed by Voller, but with its root in the work of Crank many years ago.Dedicated to Professor J. Crank on the occasion of his 80th birthday  相似文献   

12.
The aim of this work is to evaluate numerically the human thermal response that 24 students and 1 teacher feel in a classroom equipped with radiant cooling systems and subjected to uniform convective environments, in lightly warm conditions. The evolution of thermal comfort conditions, using the PMV index, is made by the multi-nodal human thermal comfort model.In this numerical model, that works in transient or steady-state conditions and simulates simultaneously a group of persons, the three-dimensional body is divided in 24 cylindrical and 1 spherical elements. Each element is divided in four parts (core, muscle, fat and skin), sub-divided in several layers, and protected by several clothing layers. This numerical model is divided in six parts: human body thermal system, clothing thermal system, integral equations resolution system, thermoregulatory system, heat exchange between the body and the environment and thermal comfort evaluation.Seven different radiant systems are combined to three convective environments. In the radiant systems (1) no radiant system without warmed curtain, (2) no radiant system with warmed curtain, (3) radiant floors cooling system with warmed curtain, (4) radiant panels cooling system with warmed curtain, (5) radiant ceiling cooling system with warmed curtain, (6) radiant floor and panels cooling system with warmed curtain and (7) radiant ceiling and panels cooling system with warmed curtain are analysed, while in the convective environments (1) without air velocity field and with uniform air velocity field of (2) 0.2 m/s and (3) 0.6 m/s are also analysed. The internal air temperature and internal surfaces temperature are 28 °C, the radiant cooling surfaces temperature are 19 °C and the warmed internal curtains surfaces temperatures, subjected to direct solar radiation, are 40 °C.The numerical model calculates the Mean Radiant Temperature field, the human bodies’ temperatures field and the thermal comfort level, for the 25 occupants, for the 21 analysed situations.Without uniform air velocity field, when only one individual radiant cooling system is used, the Predicted Percentage of Dissatisfied people is lowest when the radiant floor cooling system is applied and is highest when the radiant panel cooling system is applied. When are combined the radiant ceiling or the floor cooling systems with the radiant panel cooling system the Predicted Percentage of Dissatisfied people decreases.When the uniform air velocity increases the thermal comfort level, that the occupants are subjected, increases. When the radiant floor cooling system or the combination of radiant floor and panel cooling systems without uniform air velocity field is applied, the Category C is verified for some occupants. However, with a convective uniform air velocity field of 0.2 m/s the Category B is verified and with a convective uniform air velocity field of 0.6 m/s the Category A is verify for some occupants. In the last situation the Category C is verified, in general, for all occupants.  相似文献   

13.
The continuous casting Stefan problem is a mathematical model describing the solidification with convection of a material being cast continuously with a prescribed velocity. We propose a practical piecewise linear finite element scheme motivated by the characteristic finite element method and derive an error estimate for the scheme which is of the same convergence order as that proved for Stefan problem without convection.  相似文献   

14.
In continuous casting of steel, the solidification process can be influenced by external cooling and by the casting speed. We describe an algorithm based on nonlinear constrained optimization which computes values of these control variables such that a desirable solidification front is approximated within an accuracy that is sufficient for practical purposes.
Zusammenfassung Der Erstarrungsprozeß beim Strangguß von Stahl kann durch externe Kühlung und durch die Gießgeschwindigkeit beeinflußt werden. Wir beschreiben eine auf nichtlinearer Optimierung beruhende Methode, diese Kontrollvariablen so zu berechnen, daß ein vorgegebener Erstarrungsverlauf mit für praktische Zwecke hinreichender Genauigkeit approximiert werden kann.


Supported by Fonds zur Förderung der wissenschaftlichen Forschung, projectS 32/03  相似文献   

15.
Components which best utilise the properties of high temperature titanium alloys are characterised by thin sections of a few millimetres thickness and hundreds of millimetres length. These alloys however are difficult to work with, being highly reactive in a molten state, necessitating a low superheat during processing. Centrifugal casting is therefore utilised as a candidate production method, as under the centrifugal force, metal can rapidly fill thicknesses substantially less than a millimetre before it solidifies. However, due to the high liquid metal velocity developed there is a high risk of turbulent flow and of the trapping of any gas present within the liquid metal.This challenging application involves a combination of complex rotating geometries, significant centrifugal forces and high velocity transient free surface flows, coupled with simultaneous heat transfer and solidification. Capturing these interacting physical phenomena, free surface flows, trapped air and associated defects is a complex modelling task.Building upon earlier work on computational modelling the authors have previously described to capture and validate the fluid dynamics behaviour of rotating systems, this contribution considers the modelling and validation of such systems to capture the coupled flow and thermal solidification behaviour and associated defect development.A bench-mark test case is employed to validate the effect of solidification on the fluidity of an aluminium alloy. Validation is also performed against a series of casting experiments to establish the models ability to capture the filling process and predict defects due to air entrapment within the solidified metal.  相似文献   

16.
We consider the problem of a phase change in a continuous casting process: molten bronze is poured on to a moving steel strip cooled from below, in order to solidify the bronze. An estimate of the width of the solidification zone, depending on the thickness of the strip and on the casting velocity, is obtained, neglecting conduction in the direction of the strip motion.  相似文献   

17.
Melt conditioned direct-chill (MC-DC) casting is a novel technology which combines direct-chill (DC) casting with a high shear device directly immersed in the sump for in situ microstructural control. A numerical model of melt-conditioned direct-chill casting (MC-DC) is presented in this paper. This model is based on a finite volume continuum model using a moving reference frame (MRF) to enforce fluid rotation inside the rotor-stator region and is numerically stable within the range of processing conditions. The boundary conditions for the heat transfer include the effects of the hot-top, the aluminium mould, and the direct chill. This model is applied to the casting of two alloys: aluminium-based A6060 and magnesium-based AZ31. Results show that MC-DC casting modifies the temperature profile in the sump, resulting in a larger temperature gradient at the solidification front and a shorter local solidification time. The increased heat extraction rate due to forced convection in the sump is expected to contribute to a finer, more uniform grain structure in the as-cast billet.  相似文献   

18.
A numerical simulation of a solidification experiment is presented. The experimental setup consists of an empty screwed up mould, which is filled up with molten steel and cools down due to atmospheric conditions. During the cooling process, the temperature at the centre as well as the shrinkage at the narrow side, respectively, have been recorded. The simulation has been run via the software ANSYS modified by specific provided programmer interfaces, the User Programmable Features (UPFs). All required temperature dependent material parameters have been provided by ThyssenKrupp Steel Europe. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We model the growth of a one-dimensional solid by considering a modified Fourier law with a size-dependent effective thermal conductivity and a Newton cooling condition at the interface between the solid and the cold environment. In the limit of a large Biot number, this condition becomes the commonly used fixed-temperature condition. It is shown that in practice the size of this non-dimensional number is very small. We study the effect of a small Biot number on the solidification process with numerical and asymptotic solution methods. The study indicates that non-local effects become less important as the Biot number decreases.  相似文献   

20.
A new finite element: technique is developed to solve steady-state conduction-advection problems with a phase change. The energy balance equation at the solid/liquid interface is employed to calculate the velocity of the solid/liquid interface in the Lagrangian frame. The position of the solid/liquid interface in the Eulerian frame is determined based on the composition of the velocity of the solid/liquid interface in the Lagrangian frame and the steady-state velocity of a rigid body. The interface position and the finite element mesh are continuously updated during an incremental process. No artificial diffusion is needed with this new finite element approach. An analytical solution for solidification of a pure material with a radiative boundary condition is also developed in this paper. Numerical experimentation is conducted and the corresponding results are compared with analytical solutions. The numerical results agree well with analytical solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号