首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new β3‐homohistidine‐ and β3‐homocysteine‐containing β‐peptides have been prepared by solid‐phase synthesis. A β‐octapeptide ( 2 ) contains seven β3‐amino acids and one β2‐amino acid. The β2/β3 segment has been placed in the middle of this peptide, which contains β3‐amino acids of alternating configuration, to induce the formation of a hairpin secondary structure. A β‐decapeptide ( 3 ) has been designed to fold to a 314‐helical secondary structure with neighboring His side chains in 6‐ and 9‐positions. Circular‐dichroism (CD) measurements show the capability of both peptides to bind Zn2+ ions in aqueous solution. In the case of the β‐octapeptide, binding of Zn2+ causes a dramatic change of the CD spectrum, indicating a change or a stabilization of its secondary structure. Zn2+ Ions clearly stabilize the 314‐helix of the β‐decapeptide, in neutral and basic solution. For the construction of the two new β‐peptides, we needed to have a supply of the β‐amino acid derivatives Fmoc‐β3hCys(Trt)‐OH and Fmoc‐β3hHis(Trt)‐OH, the preparation of which is described herein.  相似文献   

2.
The Ser, Cys, and His side chains play decisive roles in the syntheses, structures, and functions of proteins and enzymes. For our structural and biomedical investigations of β‐peptides consisting of amino acids with proteinogenic side chains, we needed to have reliable preparative access to the title compounds. The two β3‐homoamino acid derivatives were obtained by Arndt–Eistert methodology from Boc‐His(Ts)‐OH and Fmoc‐Cys(PMB)‐OH (Schemes 2–4), with the side‐chain functional groups' reactivities requiring special precautions. The β2‐homoamino acids were prepared with the help of the chiral oxazolidinone auxiliary DIOZ by diastereoselective aldol additions of suitable Ti‐enolates to formaldehyde (generated in situ from trioxane) and subsequent functional‐group manipulations. These include OH→OtBu etherification (for β2hSer; Schemes 5 and 6), OH→STrt replacement (for β2hCys; Scheme 7), and CH2OH→CH2N3→CH2NH2 transformations (for β2hHis; Schemes 9–11). Including protection/deprotection/re‐protection reactions, it takes up to ten steps to obtain the enantiomerically pure target compounds from commercial precursors. Unsuccessful approaches, pitfalls, and optimization procedures are also discussed. The final products and the intermediate compounds are fully characterized by retention times (tR), melting points, optical rotations, HPLC on chiral columns, IR, 1H‐ and 13C‐NMR spectroscopy, mass spectrometry, elemental analyses, and (in some cases) by X‐ray crystal‐structure analysis.  相似文献   

3.
An improved and practical procedure for the stereoselective synthesis of anti‐β‐hydroxy‐α‐amino acids (anti‐βhAAs), by palladium‐catalyzed sequential C(sp3)?H functionalization directed by 8‐aminoquinoline auxiliary, is described. followed by a previously established monoarylation and/or alkylation of the β‐methyl C(sp3)?H of alanine derivative, β‐acetoxylation of both alkylic and benzylic methylene C(sp3)?H bonds affords various anti‐β‐hydroxy‐α‐amino acid derivatives. As an example, the synthesis of β‐mercapto‐α‐amino acids, which are highly important to the extension of native chemical ligation chemistry beyond cysteine, is described. The synthetic potential of this protocol is further demonstrated by the synthesis of diverse β‐branched α‐amino acids. The observed diastereoselectivities are strongly influenced by electronic effects of aromatic AAs and steric effects of the linear side‐chain AAs, which could be explained by the competition of intramolecular C?OAc bond reductive elimination from PdIV intermediates vs. intermolecular attack by an external nucleophile (AcO?) in an SN2‐type process.  相似文献   

4.
The preparation of three new N‐Fmoc‐protected (Fmoc=[(9H‐fluoren‐9‐yl)methoxy]carbonyl) β2‐homoamino acids with proteinogenic side chains (from Ile, Tyr, and Met) is described, the key step being a diastereoselective amidomethylation of the corresponding Ti‐enolates of 3‐acyl‐4‐isopropyl‐5,5‐diphenyloxazolidin‐2‐ones with CbzNHCH2OMe/TiCl4 (Cbz=(benzyloxy)carbonyl) in yields of 60–70% and with diastereoselectivities of >90%. Removal of the chiral auxiliary with LiOH or NaOH gives the N‐Cbz‐protected β‐amino acids, which were subjected to an N‐Cbz/N‐Fmoc (Fmoc=[(9H‐fluoren‐9‐yl)methoxy]carbonyl) protective‐group exchange. The method is suitable for large‐scale preparation of Fmoc‐β2hXaa‐OH for solid‐phase syntheses of β‐peptides. The Fmoc‐amino acids and all compounds leading to them have been fully characterized by melting points, optical rotations, IR, 1H‐ and 13C‐NMR, and mass spectra, as well as by elemental analyses.  相似文献   

5.
Different cyclo‐β‐dipeptides were prepared from corresponding N‐substituted β‐alanine derivatives under mild conditions using PhPOCl2 as activating agent in benzene and Et3N as base. To evaluate β3‐substituent influence, the amino acids 7 – 26 were synthesized, and a β‐lactam formation reaction was carried out instead of cyclo‐β‐dipeptide formation. The crystal structures of three derivatives of cyclo‐β‐peptides and one β‐lactam are presented.  相似文献   

6.
The synthesis of bolaamphiphiles from unusual β‐amino acids or an alcohol and C12 or C20 spacers is described. Unusual β‐amino acids such as a sugar amino acid, an AZT‐derived amino acid, a norbornene amino acid, and an AZT‐derived amino alcohol were coupled with spacers under standard conditions to get the novel bolaamphiphiles 5 – 8 (Scheme 1), 12 and 13 (Scheme 2), and 17 and 20 (Scheme 3). Some of these compounds, on precipitation from MeOH/H2O, self‐assembled into organized molecular structures.  相似文献   

7.
The design and synthesis of β‐peptides from new C‐linked carbo‐β‐amino acids (β‐Caa) presented here, provides an opportunity to understand the impact of carbohydrate side chains on the formation and stability of helical structures. The β‐amino acids, Boc‐(S)‐β‐Caa(g)‐OMe 1 and Boc‐(R)‐β‐Caa(g)‐OMe 2 , having a D ‐galactopyranoside side chain were prepared from D ‐galactose. Similarly, the homo C‐linked carbo‐β‐amino acids (β‐hCaa); Boc‐(S)‐β‐hCaa(x)‐OMe 3 and Boc‐(R)‐β‐hCaa(x)‐OMe 4 , were prepared from D ‐glucose. The peptides derived from the above monomers were investigated by NMR, CD, and MD studies. The β‐peptides, especially the shorter ones obtained from the epimeric (at the amine stereocenter Cβ) 1 and 2 by the concept of alternating chirality, showed a much smaller propensity to form 10/12‐helices. This substantial destabilization of the helix could be attributed to the bulkier D ‐galactopyranoside side chain. Our efforts to prepare peptides with alternating 3 and 4 were unsuccessful. However, the β‐peptides derived from alternating geometrically heterochiral (at Cβ) 4 and Boc‐(R)‐β‐Caa(x)‐OMe 5 (D ‐xylose side chain) display robust right‐handed 10/12‐helices, while the mixed peptides with alternating 4 and Boc‐β‐hGly‐OMe 6 (β‐homoglycine), resulted in left‐handed β‐helices. These observations show a distinct influence of the side chains on helix formation as well as their stability.  相似文献   

8.
N‐Methyl β‐amino acids are generally required for application in the synthesis of potentially bioactive modified peptides and other oligomers. Previous work highlighted the reductive cleavage of 1,3‐oxazolidin‐5‐ones to synthesise N‐methyl α‐amino acids. Starting from α‐amino acids, two approaches were used to prepare the corresponding N‐methyl β‐amino acids. First, α‐amino acids were converted to N‐methyl α‐amino acids by the so‐called ‘1,3‐oxazolidin‐5‐one strategy’, and these were then homologated by the Arndt–Eistert procedure to afford N‐protected N‐methyl β‐amino acids derived from the 20 common α‐amino acids. These compounds were prepared in yields of 23–57% (relative to N‐methyl α‐amino acid). In a second approach, twelve N‐protected α‐amino acids could be directly homologated by the Arndt–Eistert procedure, and the resulting β‐amino acids were converted to the 1,3‐oxazinan‐6‐ones in 30–45% yield. Finally, reductive cleavage afforded the desired N‐methyl β‐amino acids in 41–63% yield. One sterically congested β‐amino acid, 3‐methyl‐3‐aminobutanoic acid, did give a high yield (95%) of the 1,3‐oxazinan‐6‐one ( 65 ), and subsequent reductive cleavage gave the corresponding AIBN‐derived N‐methyl β‐amino acid 61 in 71% yield (Scheme 2). Thus, our protocols allow the ready preparation of all N‐methyl β‐amino acids derived from the 20 proteinogenic α‐amino acids.  相似文献   

9.
β3‐Peptides consisting of six, seven, and ten homologated proteinogenic amino acid residues have been attached to an α‐heptapeptide (all d‐ amino acid residues; 4 ), to a hexaethylene glycol chain (PEGylation; 5c ), and to dipicolinic acid (DPA derivative 6 ), respectively. The conjugation of the β‐peptides with the second component was carried out through the N‐termini in all three cases. According to NMR analysis (CD3OH solutions), the (M)‐314‐helical structure of the β‐peptidic segments was unscathed in all three chimeric compounds (Figs. 2, 4, and 5). The α‐peptidic section of the α/β‐peptide was unstructured, and so was the oligoethylene glycol chain in the PEGylated compound. Thus, neither does the appendage influence the β‐peptidic secondary structure, nor does the latter cause any order in the attached oligomers to be observed by this method of analysis. A similar conclusion may be drawn from CD spectra (Figs. 1, 3, and 5). These results bode well for the development of delivery systems involving β‐peptides.  相似文献   

10.
The effect of β3‐amino acids on the conformation and catalytic performance of the peptidic catalyst H‐d Pro‐Pro‐Glu‐NH2 was investigated. Analogues of the peptidic catalyst bearing instead of the α‐amino acids the respective β3‐amino acids were prepared and their reactivity and stereoselectivity was investigated in conjugate addition reactions of aldehydes to nitroolefins. Additional computational studies provided insights into the preferred conformations of the peptidic catalysts. The results show that conformational flexibility at the N‐terminus has a severe effect on the stereoselectivity but is tolerated at the C‐terminus.  相似文献   

11.
In view of the prominent role of the 1H‐indol‐3‐yl side chain of tryptophan in peptides and proteins, it is important to have the appropriately protected homologs H‐β2 HTrp OH and H‐β3 HTrp OH (Fig.) available for incorporation in β‐peptides. The β2‐HTrp building block is especially important, because β2‐amino acid residues cause β‐peptide chains to fold to the unusual 12/10 helix or to a hairpin turn. The preparation of Fmoc and Z β2‐HTrp(Boc) OH by Curtius degradation (Scheme 1) of a succinic acid derivative is described (Schemes 2–4). To this end, the (S)‐4‐isopropyl‐3‐[(N‐Boc‐indol‐3‐yl)propionyl]‐1,3‐oxazolidin‐2‐one enolate is alkylated with Br CH2CO2Bn (Scheme 3). Subsequent hydrogenolysis, Curtius degradation, and removal of the Evans auxiliary group gives the desired derivatives of (R)‐H β2‐HTrp OH (Scheme 4). Since the (R)‐form of the auxiliary is also available, access to (S)‐β2‐HTrp‐containing β‐peptides is provided as well.  相似文献   

12.
The synthesis and CD‐spectroscopic analysis of eleven water‐soluble β‐peptides composed of all‐β3 or alternating β2‐ and β3‐amino acids is described. Different approaches for the efficient syntheses of longer‐chain β‐peptides (>9 residues) were investigated. They were synthesized on solid phase with Fmoc‐protected amino acids or Fmoc‐protected di‐ or tripeptide fragments (assembled using solution‐phase synthesis). The use of preformed fragments significantly increased the purity of the crude peptides and facilitated purification. Especially, the use of Fmoc‐protected β2/β3‐dipeptides for the synthesis of a ‘mixed' β2/β3‐nonapeptide proved to be remarkably effective, yielding the crude peptide in 95% purity and without detectable epimerization of the β2‐amino acid residues. This is a significant improvement over previously reported procedures for the solid‐phase synthesis of β‐peptides, and foreshadows that the field of β‐peptide research will now switch from synthesis to the design and study of complex functional ‘β‐proteins'.  相似文献   

13.
Like α‐amino acids, β‐ and γ‐amino acids form spirobicyclic complexes (see 2 and 3 ) by reaction with the chiral di‐μ‐chlorobis{2‐[1‐dimethylamino‐ϰN)‐ethyl]phenyl‐ϰC}dipalladium complexes 1 under basic conditions (Scheme 1 and X‐ray structures in Fig. 1). The diastereoisomeric complexes formed with mixtures of enantiomers of either the amino acids or the dichloro‐dipalladium complexes give rise to marked chemical‐shift differences in the 1H‐ and 13C‐NMR spectra (Figs. 2 – 4) to allow determination of the enantiomer purities. A simple procedure is described by which β‐ and γ‐amino acids (which may be generated in situ from Boc‐ or Fmoc‐protected precursors) are converted to the Pd complexes and subjected to NMR measurements. The effects of solvent, temperature, and variation of the aryl group in the chiral derivatizing Pd reagent are described (Figs. 4 and 5). The methyl esters of β‐amino acids can also be employed, forming diastereoisomeric chloro[(amino‐ϰN)aryl‐ϰC][(amino‐ϰN)alkanoate]palladium complexes 6 for determining enantiomer ratios (Scheme 6). The new method has great scope, as demonstrated for β2‐, β3‐, β2,3‐, β2,2,3‐, γ2‐, γ3‐, γ4‐, and γ2,3,4‐amino acid derivatives.  相似文献   

14.
N‐Acyl‐β2/β3‐dipeptide‐amide somatostatin analogs, 5 – 8 , with β2‐HTrp‐β3‐HLys ('natural' sequence) and β2‐HLys‐β3‐HTrp (retro‐sequence) have been synthesized (in solution). Depending on their relative configurations and on the nature of the terminal N‐acyl and terminal C‐amino group, the linear β‐dipeptide derivatives have affinities for the human receptor hsst 4, ranging from 250 to >10000 nanomolar (Fig. 3). Also, N‐Ac‐tetrapeptide amides 9 and 10 , which contain one α‐ and three β‐amino acid residues (NβαββC), have been prepared (solid‐phase synthesis), with the natural (Phe, Trp, Lys, Thr) and the retro‐sequence (Thr, Lys, Trp, Phe) of side chains and with two different configurations, each, of the two central amino acid residues. The novel ‘mixed', linear α/β‐peptides have affinities for the hsst 4 receptor ranging from 23 to >10000 nanomolar (Fig. 4), and, like ‘pure' β‐peptides, they are completely stable to a series of proteolytic enzymes. Thus, the peptidic turn of the cyclic tetradecapeptide somatostatin (Fig. 1) can be mimicked by simple linear di‐ and tetrapeptides. The tendency of β‐dipeptides for forming hydrogen‐bonded rings is confirmed by calculations at the B3LYP/6‐31G(d,p) level (Fig. 2). The reported results open new avenues for the design of low‐molecular‐weight peptidic drugs.  相似文献   

15.
The NMR‐solution structure of an α‐heptapeptide with a central Aib residue was investigated in order to verify that, in contrast to β‐peptides, short α‐peptides do not form a helical structures in MeOH. Although the central Aib residue was found to induce a bend in the experimentally determined structure, no secondary structure typical for longer α‐peptides or proteins was found. A β2/β3‐nonapeptide with polar, positively charged side chains was subjected to NMR analysis in MeOH and H2O. Whereas, in MeOH, it folds into a 10/12‐helix very similar to the structure determined for a corresponding β2/β3‐nonapeptide with only aliphatic side chains, no dominant conformation could be determined in H2O. Finally, the NMR analysis of a β3‐icosapeptide containing the side chains of all 20 proteinogenic amino acids in MeOH is described. It revealed that this 20mer folds into a 314‐helix over its whole length forming six full turns, the longest 314‐helix found so far. Together, our findings confirm that, in contrast to α‐peptides, β‐peptides not only form helices with just six residues, but also form helices that are longer than helical sections usually observed in proteins or natural peptides. The higher helix‐forming propensity of long β‐peptides is attributed to the conformation‐stabilizing effect of the staggered ethane sections in β‐peptides which outweighs the detrimental effect of the increasing macrodipole.  相似文献   

16.
Twelve peptides, 1 – 12 , have been synthesized, which consist of alternating sequences of α‐ and β‐amino acid residues carrying either proteinogenic side chains or geminal dimethyl groups (Aib). Two peptides, 13 and 14 , containing 2‐methyl‐3‐aminobutanoic acid residues or a ‘random mix’ of α‐, β2‐, and β3‐amino acid moieties were also prepared. The new compounds were fully characterized by CD (Figs. 1 and 2), and 1H‐ and 13C‐NMR spectroscopy, and high‐resolution mass spectrometry (HR‐MS). In two cases, 3 and 14 , we discovered novel types of turn structures with nine‐ and ten‐membered H‐bonded rings forming the actual turns. In two other cases, 8 and 11 , we found 14/15‐helices, which had been previously disclosed in mixed α/β‐peptides containing unusual β‐amino acids with non‐proteinogenic side chains. The helices are formed by peptides containing the amino acid moiety Aib in every other position, and their backbones are primarily not held together by H‐bonds, but by the intrinsic conformations of the containing amino acid building blocks. The structures offer new possibilities of mimicking peptide–protein and protein–protein interactions (PPI).  相似文献   

17.
Five β‐peptide thioesters ( 1 – 5 , containing 3, 4, 10 residues) were prepared by manual solid‐phase synthesis and purified by reverse‐phase preparative HPLC. A β‐undecapeptide ( 6 ) and an α‐undecapeptide ( 7 ) with N‐terminal β3‐HCys and Cys residues were prepared by manual and machine synthesis, respectively. Coupling of the thioesters with the cysteine derivatives in the presence of PhSH (Scheme and Fig. 1) in aqueous solution occurred smoothly and quantitatively. Pentadeca‐ and heneicosapeptides ( 8 – 10 ) were isolated, after preparative RP‐HPLC purification, in yields of up to 60%. Thus, the so‐called native chemical ligation works well with β‐peptides, producing larger β3‐ and α/β3‐mixed peptides. Compounds 1 – 10 were characterized by high‐resolution mass spectrometry (HR‐MS) and by CD spectroscopy, including temperature and concentration dependence. β‐Peptide 9 with 21 residues shows an intense negative Cotton effect near 210 nm but no zero‐crossing above 190 nm, (Figs. 2–4), which is characteristic of β‐peptidic 314‐helical structures. Comparison of the CD spectra of the mixed α/β‐pentadecapeptide ( 10 ) and a helical α‐peptide (Fig. 5) indicate the presence of an α‐peptidic 3.613 helix.  相似文献   

18.
The title compounds, 4 and 7 , have been prepared from the corresponding α‐amino acid derivative selenocystine ( 1 ) by the following sequence of steps: cleavage of the Se? Se bond with NaBH4, p‐methoxybenzyl (PMB) protection of the SeH group, Fmoc or Boc protection at the N‐atom and Arndt–Eistert homologation (Schemes 1 and 2). A β3‐heptapeptide 8 with an N‐terminal β3‐hSec(PMB) residue was synthesized on Rink amide AM resin and deprotected (‘in air’) to give the corresponding diselenide 9 , which, in turn, was coupled with a β3‐tetrapeptide thiol ester 10 by a seleno‐ligation. The product β3‐undecapeptide was identified as its diselenide and its mixed selenosulfide with thiophenol (Scheme 3). The differences between α‐ and β‐Sec derivatives are discussed.  相似文献   

19.
Cyclo‐β‐tetrapeptides are known to adopt a conformation with an intramolecular transannular hydrogen bond in solution. Analysis of this structure reveals that incorporation of a β2‐amino‐acid residue should lead to mimics of ‘α‐peptidic β‐turns’ (cf. A, B, C ). It is also known that short‐chain mixed β/α‐peptides with appropriate side chains can be used to mimic interactions between α‐peptidic hairpin turns and G protein‐coupled receptors. Based on these facts, we have now prepared a number of cyclic and open‐chain tetrapeptides, 7 – 20 , consisting of α‐, β2‐, and β3‐amino‐acid residues, which bear the side chains of Trp and Lys, and possess backbone configurations such that they should be capable of mimicking somatostatin in its affinity for the human SRIF receptors (hsst1–5). All peptides were prepared by solid‐phase coupling by the Fmoc strategy. For the cyclic peptides, the three‐dimensional orthogonal methodology (Scheme 3) was employed with best success. The new compounds were characterized by high‐resolution mass spectrometry, NMR and CD spectroscopy, and, in five cases, by a full NMR‐solution‐structure determination (in MeOH or H2O; Fig. 4). The affinities of the new compounds for the receptors hsst1–5 were determined by competition with [125I]LTT‐SRIF28 or [125I] [Tyr10]‐CST14. In Table 1, the data are listed, together with corresponding values of all β‐ and γ‐peptidic somatostatin/Sandostatin® mimics measured previously by our groups. Submicromolar affinities have been achieved for most of the human SRIF receptors hsst1–5. Especially high, specific binding affinities for receptor hsst4 (which is highly expressed in lung and brain tissue, although still of unknown function!) was observed with some of the β‐peptidic mimics. In view of the fact that numerous peptide‐activated G protein‐coupled receptors (GPCRs) recognize ligands with turn structure (Table 2), the results reported herein are relevant far beyond the realm of somatostatin: many other peptide GPCRs should be ‘reached’ with β‐ and γ‐peptidic mimics as well, and these compounds are proteolytically and metabolically stable, and do not need to be cell‐penetrating for this purpose (Fig. 5).  相似文献   

20.
Hybrid peptides composed of α‐ and β‐amino acids have recently emerged as new class of peptide foldamers. Comparatively, γ‐ and hybrid γ‐peptides composed of γ4‐amino acids are less studied than their β‐counterparts. However, recent investigations reveal that γ4‐amino acids have a higher propensity to fold into ordered helical structures. As amino acid side‐chain functional groups play a crucial role in the biological context, the objective of this study was to investigate efficient synthesis of γ4‐residues with functional proteinogenic side‐chains and their structural analysis in hybrid‐peptide sequences. Here, the efficient and enantiopure synthesis of various N‐ and C‐terminal free‐γ4‐residues, starting from the benzyl esters (COOBzl) of N‐Cbz‐protected (E)α,β‐unsaturated γ‐amino acids through multiple hydrogenolysis and double‐bond reduction in a single‐pot catalytic hydrogenation is reported. The crystal conformations of eight unprotected γ4‐amino acids (γ4‐Val, γ4‐Leu, γ4‐Ile, γ4‐Thr(OtBu), γ4‐Tyr, γ4‐Asp(OtBu), γ4‐Glu(OtBu), and γ‐Aib) reveals that these amino acids adopted a helix favoring gauche conformations along the central Cγ? Cβ bond. To study the behavior of γ4‐residues with functional side chains in peptide sequences, two short hybrid γ‐peptides P1 (Ac‐Aib‐γ4‐Asn‐Aib‐γ4‐Leu‐Aib‐γ4‐Leu‐CONH2) and P2 (Ac‐Aib‐γ4‐Ser‐Aib‐γ4‐Val‐Aib‐γ4‐Val‐CONH2) were designed, synthesized on solid phase, and their 12‐helical conformation in single crystals were studied. Remarkably, the γ4‐Asn residue in P1 facilitates the tetrameric helical aggregations through interhelical H bonding between the side‐chain amide groups. Furthermore, the hydroxyl side‐chain of γ4‐Ser in P2 is involved in the interhelical H bonding with the backbone amide group. In addition, the analysis of 87 γ4‐residues in peptide single‐crystals reveal that the γ4‐residues in 12‐helices are more ordered as compared with the 10/12‐ and 12/14‐helices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号