首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Violaxanthin A (=(all‐E,3S,5S,6R,3′S,5′S,6′R)‐5,6 : 5′,6′‐diepoxy‐5,6,5′,6′‐tetrahydro‐β,β‐carotene‐3,3′‐diol =syn,syn‐violaxanthin; 5 ) and violaxanthin B (=(all‐E,3S,5S,6R,3′S,5′R,6′S)‐5,6 : 5′,6′‐diepoxy‐5,6,5′,6′‐tetrahydro‐β,β‐carotene‐3,3′‐diol=syn,anti‐violaxanthin; 6 ) were prepared by epoxidation of zeaxanthin diacetate ( 1 ) with monoperphthalic acid. Violaxanthins 5 and 6 were submitted to thermal isomerization and I2‐catalyzed photoisomerization. The structure of the main products, i.e., (9Z)‐ 5 , (13Z)‐ 5 , (9Z)‐ 6 , (9′Z)‐ 6 , (13Z)‐ 6 , and (13′Z)‐ 6 , was determined by their UV/VIS, CD, 1H‐NMR, 13C‐NMR, and mass spectra.  相似文献   

2.
The (3R,5′R,6′R)‐ and (3R,5′R,6′S)‐capsanthol‐3′‐one (=3,6′‐dihydroxy‐β,κ‐caroten‐3′‐one; 4 and 5 , resp.) were reduced by different complex metal hydrides containing organic ligands. The ratio of the thus obtained diastereoisomeric (3′S)‐capsanthols 2 and 3 or (3′R)‐capsanthols 6 and 7 , respectively, was investigated. Four complex hydrides showed remarkable stereoselectivity and produced the (3′R,6′S)‐capsanthol ( 6 ) in 80 – 100% (see Table 1). The starting materials and the products were characterized by UV/VIS, CD, 1H‐ and 13C‐NMR, and mass spectra.  相似文献   

3.
3′‐Epilutein (=(all‐E,3R,3′S,6′R)‐4′,5′‐didehydro‐5′,6′‐dihydro‐β,β‐carotene‐3,3′‐diol; 1 ), isolated from the flowers of Caltha palustris, was submitted to both thermal isomerization and I2‐catalyzed photoisomerization. The structures of the main products (9Z)‐ 1 , (9′Z)‐ 1 , (13Z)‐ 1 , (13′Z)‐ 1 , (15Z)‐ 1 , and (9Z,9′Z)‐ 1 were determined based on UV/VIS, CD, 1H‐NMR, and MS data.  相似文献   

4.
(6′S)‐ and (6′R)‐‘Capsorubol‐6‐one' (=(3S,3′S,5R,5′R,6′S)‐ and (3S,3′S,5R,5′R,6′R)‐3,3′,6′‐trihydroxy‐κ,κ‐caroten‐6‐one; 8 and 9 , resp.), (6S,6′R)‐ and (6R,6′R)‐capsorubol (=3S,3′S,5R,5′R,6S,6′R)‐ and (3S,3′S,5R,5′R,6R,6′R)‐κ,κ‐carotene‐3,3′,6,6′‐tetrol; 11 and 12 , resp.) and (6′S)‐ and (6′R)‐cryptocapsol (=(3′S,5′R,6′S)‐ and (3′S,5′R,6′R)‐β,κ‐carotene‐3′,6′‐diol; 5 and 6 , resp.) were prepared in crystalline from by the reduction of capsorubin (=(3S,3′S,5R,5′R)‐3,3′‐dihydroxy‐κ,κ‐carotene‐6,6′‐dione; 7 ) and cryptocapsin (=(3′S,5′R)‐3′‐hydroxy‐β,κ‐caroten‐6′‐one; 4 ) and characterized by their UV/VIS, CD, 1H‐NMR, and mass spectra.  相似文献   

5.
Two spiro[indoline‐3,3′‐pyrrolizine] derivatives have been synthesized in good yield with high regio‐ and stereospecificity using one‐pot reactions between readily available starting materials, namely l ‐proline, substituted 1H‐indole‐2,3‐diones and electron‐deficient alkenes. The products have been fully characterized by elemental analysis, IR and NMR spectroscopy, mass spectrometry and crystal structure analysis. In (1′RS ,2′RS ,3SR ,7a′SR )‐2′‐benzoyl‐1‐hexyl‐2‐oxo‐1′,2′,5′,6′,7′,7a′‐hexahydrospiro[indoline‐3,3′‐pyrrolizine]‐1′‐carboxylic acid, C28H32N2O4, (I), the unsubstituted pyrrole ring and the reduced spiro‐fused pyrrole ring adopt half‐chair and envelope conformations, respectively, while in (1′RS ,2′RS ,3SR ,7a′SR )‐1′,2′‐bis(4‐chlorobenzoyl)‐5,7‐dichloro‐2‐oxo‐1′,2′,5′,6′,7′,7a′‐hexahydrospiro[indoline‐3,3′‐pyrrolizine], which crystallizes as a partial dichloromethane solvate, C28H20Cl4N2O3·0.981CH2Cl2, (II), where the solvent component is disordered over three sets of atomic sites, these two rings adopt envelope and half‐chair conformations, respectively. Molecules of (I) are linked by an O—H…·O hydrogen bond to form cyclic R 66(48) hexamers of (S 6) symmetry, which are further linked by two C—H…O hydrogen bonds to form a three‐dimensional framework structure. In compound (II), inversion‐related pairs of N—H…O hydrogen bonds link the spiro[indoline‐3,3′‐pyrrolizine] molecules into simple R 22(8) dimers.  相似文献   

6.
Four new tetrahydrofuranoid lignan glycosides, (7S,8R,7′R,8′S)‐4,9,4′,7′‐tetrahydroxy‐3,3′‐dimethoxy‐7,9′‐epoxylignan 9‐Oβ‐D ‐glucopyranoside ( 2 ), (7R,8S,7′S,8′R)‐4,9,4′,7′‐tetrahydroxy‐3,3′‐dimethoxy‐7,9′‐epoxylignan 9‐Oβ‐D ‐glucopyranoside ( 3 ), (7R,8S,7′R,8′S)‐4,9,4′,9′‐tetrahydroxy‐3,3′‐dimethoxy‐7,7′‐epoxylignan 9‐Oβ‐D ‐glucopyranoside ( 4 ), and rel‐(7R,8S,7′S,8′R)‐4,9,4′,9′‐tetrahydroxy‐3,3′‐dimethoxy‐7,7′‐epoxylignan 9‐Oβ‐D ‐glucopyranoside ( 5 ), and ten known lignan glycosides, 1 and 6 – 14 , were isolated from the leaves of Osmanthus fragrans Lour. var. aurantiacus Makino . Their structures were established on the basis of spectral and chemical studies.  相似文献   

7.
β-Cryptoxanthin ( 1 ) was acetylated and then epoxidized with monoperoxyphthalic acid. After hydrolysis, repeated chromatography, and crystallization, (3S,5R,6S)-5,6-epoxy-β-cryptoxanthin ( 3 ), (3S,5S,6R)-5,6-epoxy-β-cryptoxanthin ( 4 ), (3R,5′R,6′R)-5′,6′-epoxy-β-cryptoxanthin ( 5 ), (3S,5R,6S,5′R,6′S)-5,6:5′,6′-diepoxy-β-cryp-toxanthin ( 6 ), and (3S,5S,6R,5′S,6′R)-5,6:5′,6′-diepoxy-β-cryptoxanthin ( 7 ) were isolated as main products and characterized by their UV/VIS, CD, 1H- and 13C-NMR, and mass spectra. The comparison of the carotenoid isolated from yellow, tomato-shaped paprika (Capsicum annuum var. lycopersiciforme flavum) with 3–5 strongly supports the structure of 3 for the natural product.  相似文献   

8.
The 2,2′‐methylenebis[furan] ( 1 ) was converted to 1‐{(4R,6S))‐6‐[(2R)‐2,4‐dihydroxybutyl]‐2,2‐dimethyl‐1,3‐dioxan‐4‐yl}‐3‐[(2R,4R)‐tetrahydro‐4,6‐dihydroxy‐2H‐pyran‐2‐yl)propan‐2‐one ((+)‐ 18 ) and its (4S)‐epimer (?)‐ 19 with high stereo‐ and enantioselectivity (Schemes 13). Under acidic methanolysis, (+)‐ 18 yielded a single spiroketal, (3R)‐4‐{(1R,3S,4′R,5R,6′S,7R)‐3′,4′,5′,6′‐tetrahydro‐4′‐hydroxy‐7‐methoxyspiro[2,6‐dioxabicyclo[3.3.1]nonane‐3,2′‐[2H]pyran]‐6′‐yl}butane‐1,3‐diol ((?)‐ 20 ), in which both O‐atoms at the spiro center reside in equatorial positions, this being due to the tricyclic nature of (?)‐ 20 (methyl pyranoside formation). Compound (?)‐ 19 was converted similarly into the (4′S)‐epimeric tricyclic spiroketal (?)‐ 21 that also adopts a similar (3S)‐configuration and conformation. Spiroketals (?)‐ 20 , (?)‐ 21 and analog (?)‐ 23 , i.e., (1R,3S,4′R,5R,6′R)‐3′,4′,5′,6′‐tetrahydro‐6′‐[(2S)‐2‐hydroxybut‐3‐enyl]‐7‐methoxyspiro[2,6‐dioxabicyclo[3.3.1]nonane‐3,2′‐[2H]pyran]‐4′‐ol, derived from (?)‐ 20 , were assayed for their cytotoxicity toward murine P388 lymphocytic leukemia and six human cancer cell lines. Only racemic (±)‐ 21 showed evidence of cancer‐cell‐growth inhibition (P388, ED50: 6.9 μg/ml).  相似文献   

9.
Three new natural products, a lignoid glycoside 1 and two dimeric phenylpropanoids 2 and 3 , along with two known lignans 4 and 5 , were isolated from the BuOH‐ and CHCl3‐soluble fractions of the whole plant of Daphne oleoides (Thymelaeaceae). The structures of the new compounds were established by spectroscopic techniques, including 2D NMR, as 4‐(β‐D ‐glucopyranosyloxy)‐9′‐hydroxy‐3,3′,4′‐trimethoxy‐7′,9‐epoxylignan ( 1 ), (1R,2S,5R,6R)‐6‐(3‐ethyl‐4‐hydroxy‐5‐methoxyphenyl)‐2‐(4‐hydroxy‐3,5‐dimethoxyphenyl)‐3,7‐dioxabicyclo[3.3.0]octane ( 2 ) and (1R,2S,5R,6S)‐2,6‐bis(3‐ethyl‐4‐hydroxy‐5‐methoxyphenyl)‐3,7‐dioxabicyclo[3.3.0]octane ( 3 ). The other lignans were identified as (+)‐pinoresinol O‐(β‐D ‐glucopyranoside) ( 4 ) and (+)‐medioresinol ( 5 ).  相似文献   

10.
An efficient method for the extraction of the carotenoids from Curtobacterium flaccumfaciens pvar poinsettiae was developed. The glucosides of C.p. 450 (=(all‐E,2R,2′R)‐2‐[4‐(β‐D ‐glucopyranosyloxy)‐3‐methylbut‐2‐enyl]‐2′‐(4‐hydroxy‐3‐methylbut‐2‐enyl)‐β, β‐carotene; 4 ) and of C.p. 473 (=(all‐E,2R,2′S)‐2‐[4‐(β‐D ‐glucopyranosyloxy)‐3‐methylbut‐2‐enyl]‐2′‐(3‐methylbut‐2‐enyl)‐3′,4′‐didehydro‐1′,2′‐dihydro‐β,ψ‐caroten‐1′‐ol; 5 ) were isolated for the first time. In addition, the hitherto unknown 3′,4′‐dihydro derivative of C.p. 450, called C.p. 460 (=(all‐E,2R,2′R)‐2‐(4‐hydroxy‐3‐methylbut‐2‐enyl)‐2′‐(3‐methylbut‐2‐enyl)‐1′,2′‐dihydro‐β,ψ‐caroten‐1′‐ol; 6 ), was identified. The structures were established by UV/VIS, CD, 1H‐ and 13C‐NMR, and mass spectra.  相似文献   

11.
Two new diarylheptanoids, katsumains A ( 1 ) and B ( 2 ), and one new kavalactone, katsumadain ( 3 ), together with the three known compounds (4E,6E)‐1,7‐diphenylhepta‐4,6‐dien‐3‐one ( 4 ), (5R,6E)‐1,7‐diphenyl‐5‐hydroxyhept‐6‐en‐3‐one ( 5 ), and cardamonin ( 6 ), were isolated from the seeds of Alpinia katsumadai Hayata . Their structures were elucidated mainly by spectroscopic methods (1D‐ and 2D‐NMR) and by mass spectrometry (HR‐ESI‐MS). Besides, the erroneous nomenclatures for (+)‐linderatin and (+)‐neolinderatin as given in [10] [11] were corrected to be 2′,4′,6′‐trihydroxy‐3′‐[(3R,4R)‐4‐isopropyl‐1‐methylcyclohex‐1‐en‐3‐yl]dihydrochalcone for (+)‐linderatin and 2′,4′,6′‐trihydroxy‐3′,5′‐bis[(3R,4R)‐4‐isopropyl‐1‐methylcyclohex‐1‐en‐3‐yl]dihydrochalcone for (+)‐neolinderatin, respectively.  相似文献   

12.
The structure of naturally‐occurring cinerin C [systematic name: (7S,8R,3′R,4′S,5′R)‐Δ8′‐4′‐hydroxy‐5,5′,3′‐trimethoxy‐3,4‐methylenedioxy‐2′,3′,4′,5′‐tetrahydro‐2′‐oxo‐7.3′,8.5′‐neolignan], isolated from the ethanol extract of leaves of Pleurothyrium cinereum (Lauraceae), has previously been established by NMR and HRMS spectroscopy, and its absolute configuration established by circular dichroism measurements. For the first time, its crystal strucure has now been established by single‐crystal X‐ray analysis, as the monohydrate, C22H26O7·H2O. The bicyclooctane moiety comprises fused cyclopentane and cyclohexenone rings which are almost coplanar. An intermolecular O—H...O hydrogen bond links the 4′‐OH and 5′‐OCH3 groups along the c axis.  相似文献   

13.
The synthesis and characterization of three new dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine] compounds are reported, together with the crystal structures of two of them. (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐Chlorophenyl)‐1‐hexyl‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C28H30ClN3O2S2, (I), (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐chlorophenyl)‐1‐benzyl‐5‐methyl‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C30H26ClN3O2S2, (II), and (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐chlorophenyl)‐5‐fluoro‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C22H17ClFN3O2S2, (III), were each isolated as a single regioisomer using a one‐pot reaction involving l ‐proline, a substituted isatin and (Z)‐5‐(4‐chlorobenzylidene)‐2‐sulfanylidenethiazolidin‐4‐one [5‐(4‐chlorobenzylidene)rhodanine]. The compositions of (I)–(III) were established by elemental analysis, complemented by high‐resolution mass spectrometry in the case of (I); their constitutions, including the definition of the regiochemistry, were established using NMR spectroscopy, and the relative configurations at the four stereogenic centres were established using single‐crystal X‐ray structure analysis. A possible reaction mechanism for the formation of (I)–(III) is proposed, based on the detailed stereochemistry. The molecules of (I) are linked into simple chains by a single N—H…N hydrogen bond, those of (II) are linked into a chain of rings by a combination of N—H…O and C—H…S=C hydrogen bonds, and those of (III) are linked into sheets by a combination of N—H…N and N—H…S=C hydrogen bonds.  相似文献   

14.
Addition of various amines to the 3,3‐bis(trifluoromethyl)acrylamides 10a and 10b gave the tripeptides 11a – 11f , mostly as mixtures of epimers (Scheme 3). The crystalline tripeptide 11f 2 was found to be the N‐terminal (2‐hydroxyethoxy)‐substituted (R,S,S)‐ester HOCH2CH2O‐D ‐Val(F6)‐MeLeu‐Ala‐OtBu by X‐ray crystallography. The C‐terminal‐protected tripeptide 11f 2 was condensed with the N‐terminus octapeptide 2b to the depsipeptide 12a which was thermally rearranged to the undecapeptide 13a (Scheme 4). The condensation of the epimeric tripeptide 11f 1 with the octapeptide 2b gave the undecapeptide 13b directly. The undecapeptides 13a and 13b were fully deprotected and cyclized to the [5‐[4,4,4,4′,4′,4′‐hexafluoro‐N‐(2‐hydroxyethoxy)‐D ‐valine]]‐ and [5‐[4,4,4,4′,4′,4′‐hexafluoro‐N‐(2‐hydroxyethoxy)‐L ‐valine]]cyclosporins 14a and 14b , respectively (Scheme 5). Rate differences observed for the thermal rearrangements of 12a to 13a and of 12b to 13b are discussed.  相似文献   

15.
The crystal and molecular structure of 1‐tert‐butyl 4‐ethyl (2′R,3′R,5′R,2S,3S)‐3‐bromo­methyl‐3‐hydroxy‐2‐[(2′‐hydroxy‐2′,6′,6′‐tri­methyl­bi­cyclo­[3.1.1]­hept‐3′‐yl­idene)­amino]­succinate, C21H34BrNO6, is presented. This compound is an intermediate in the new synthetic route to β‐substituted β‐hydroxy­aspartates, which are blockers of glutamate transport.  相似文献   

16.
Cucurbitaxanthin A (= (3S,5R,6R,3′R)-3,6-epoxy-5,6-dihydro-β,β- carotene-5,3′-diol; 5 ), cucurbitaxanthin B (= (3S,5R,6R,3′S,5′R,6′S)-3,6,5′, 6′-diepoxy-5,6,5′,6′-tetrahydro-β,β-carotene-5,3′-diol; 6 ), the epimeric cucurbitachromes 1 and 2 (= (3S,5R,6R,3′S,5′R,8′S)- and (3S,5R,6R,3′S,5′R,8′R)-3,6,5′, 8′-diepoxy-5,6,5′,6′-tetrahydro-β,β-carotene-5,3′-diol, resp.; 9/10 ), cycloviolaxanthin (= (3S,5R,6R,3′S,5′R,6′R)-3,6,3′, 6′-diepoxy-5,6,5′,6′-tetrahydro-β,κs-carotene-5,5′-diol; 8 ), and capsanthin 3,6-epoxide (= (3S,5R,6R,3′S,5′R)-3,6-epoxy-5,6-dihydro ?5,3′-dihydroxy-β,κ-caroten-6′-one; 7 ) were isolated from red spice paprika (Capsicum annuum var. longum) and characterized by their 1H- and 13C-NMR, mass, and CD spectra.  相似文献   

17.
Myristica fragrans Houtt., the source of very important spice ‘nutmeg’ used world over is native to India, Indonesia, Sri Lanka, South Africa and Southeast Asia. Phytochemical investigation of M. fragrans stem bark led to the isolation of bis-aryl dimethyl tetrahydrofuran lignans, such as grandisin [(7S,8S,7S,8S)-3,3′,4,4′,5,5′-hexamethoxy-7,7′,8,8′-lignan] and (7S,8S,7R,8R)-3,3′,4,4′,5,5′-hexamethoxy-7,7′,8,8′-lignan along with important lignans and neolignans, licarinA, licarin B, odoratisol A, (2S, 3R)-7-methoxy-3-methyl-5-((E)-prop-1-enyl)-2-(5-methoxy,3,4-methylenedioxyphenyl)-2,3-dihydrobenzofuran, elemicin, fragransin B1, raphidecursinol B, erythro-(7S,8R)-Δ8′-4,7-dihydroxy-3,5,3′-trimethoxy-8-O-4′-neolignan, erythro-(7S,8R)-Δ8′-7-hydroxy-3,4,3′,5′-tetramethoxy-8-O-4′-neolignan, surinamensin.and β-sitosterol. Structures of the 12 compounds isolated were unambiguously identified by various spectroscopic methods. The former two compounds were isolated from M. fragrans for the first time. Furthermore, the X-ray crystal structure of odoratisol A is reported in this paper for the first time.  相似文献   

18.
The content of total carotenoids and the ratio astaxanthin/idoxanthin ( = 3,3′-dihydroxy-β,β-carotene-4,4′-dione/3,3′,4′-trihydroxy-β,β-caroten-4-one) in varoius organs and tissues of one Atlantic salmon (Salmo salar, L.) reared indoors in a tank were analyzed after feeding ‘racemic’ ((3R,3′R)/(3R,3′S; meso)/(3S,3′S) 1:2:) astaxanthin (90 mg/kg feed) during one yera. Configurational analysis of astaxanthin was carried out via the (?)-dicamphanate derivative and that of idoxanthin after reaction with (+)-(S)-l-(l-naphthyl)ethyl isocyanate. Separation of all eight optical isomers of idoxanthin-tricarbamate derivatives by HPLC is described. In salmon, enzymatic reduction of astaxanthin was found to be sterospecific leading to th (4′R)-hydroxy group irrespective of the configuration at C(3′), thus resulting in four different stereoisomers of idoxanthin formed from (3R,3′R), (3R,3′S; meso)-, and (3S3′S)-astaxanthin present in the diet.  相似文献   

19.
The chloro­form solvate of uncarine C (pteropodine), (1′S,3R,4′aS,5′aS,10′aS)‐1,2,5′,5′a,7′,8′,10′,10′a‐octa­hydro‐1′‐methyl‐2‐oxospiro­[3H‐indole‐3,6′(4′aH)‐[1H]­pyrano­[3,4‐f]indolizine]‐4′‐carboxyl­ic acid methyl ester, C21H24N2O4·CHCl3, has an absolute configuration with the spiro C atom in the R configuration. Its epimer at the spiro C atom, uncarine E (isopteropodine), (1′S,3S,4′aS,5′aS,10′aS)‐1,2,5′,5′a,7′,8′,10′,10′a‐octahydro‐1′‐methyl‐2‐oxospiro[3H‐indole‐3,6′(4′aH)‐[1H]pyrano[3,4‐f]indolizine]‐4′‐carboxylic acid methyl ester, C21H24N2O4, has Z′ = 3, with no solvent. Both form intermolecular hydrogen bonds involving only the ox­indole, with N?O distances in the range 2.759 (4)–2.894 (5) Å.  相似文献   

20.
This paper describes the development of novel aromatic platforms for supramolecular construction. By the Suzuki cross‐coupling protocol, a variety of functionalized m‐terphenyl derivatives were prepared (Schemes 1–4). Macrolactamization of bis(ammonium salt) (S,S)‐ 6 with bis(acyl halide) 7 afforded the macrocyclic receptor (S,S)‐ 2 (Scheme 1), which was shown by 1H‐NMR titration studies to form ‘nesting' complexes of moderate stability (Ka between 130 and 290 M ?1, 300 K) with octyl glucosides 13 – 15 (Fig. 2) in the noncompetitive solvent CDCl3. Suzuki cross‐coupling starting from 3,3′,5,5′‐tetrabromo‐1,1′‐biphenyl provided access to a novel series of extended aromatic platforms (Scheme 5) for cleft‐type (Fig. 1) and macrotricyclic receptors such as (S,S,S,S)‐ 1 . Although mass‐spectral evidence for the formation of (S,S,S,S)‐ 1 by macrolactamization between the two functionalized 3,3′,5,5′‐tetraaryl‐1,1′‐biphenyl derivatives (S,S)‐ 33 and 36 was obtained, the 1H‐ and 13C‐NMR spectra of purified material remained rather inconclusive with respect to both purity and constitution. The versatile access to the novel, differentially functionalized 3,3′,5,5′‐tetrabromo‐1,1′‐biphenyl platforms should ensure their wide use in future supramolecular construction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号