首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A simple and efficient enantioselective synthesis of chromene, (?)‐(R)‐cordiachromene ( 1 ), and (?)‐(R)‐dictyochromenol ( 2 ) has been accomplished. This convergent synthesis utilizes intramolecular SNAr reaction for the formation of chroman ring, and Seebach's method of ‘self‐reproduction of chirality’ should establish the (R)‐configuration of the C(2) side chain as key steps.  相似文献   

3.
A new synthesis of (?)‐(R)‐muscone ((R)‐ 1 ) by means of enantioselective protonation of a bicyclic ketone enolate as the key step (see 6 →(S)‐ 4 in Scheme 2) is presented. The C15 macrocyclic system is obtained by ozonolysis (Scheme 7).  相似文献   

4.
The first total synthesis of the natural product (?)‐(19R)‐ibogamin‐19‐ol ((?)‐ 1 ) is reported (biogenetic atom numbering). Starting with L ‐glutamic acid from the chiral pool and (2S)‐but‐3‐en‐2‐ol, the crucial aliphatic isoquinuclidine (= 2‐azabicyclo[2.2.2]octane) core containing the entire configurational information of the final target was prepared in 15 steps (overall yield: 15%). The two key steps involved a highly effective, self‐immolating chirality transfer in an Ireland–Claisen rearrangement and an intramolecular nitrone‐olefin 1,3‐dipolar cycloaddition reaction (Scheme 3). Onto this aliphatic core was grafted the aromatic moiety in the form of N(1)‐protected 1H‐indole‐3‐acetic acid by application of the dicyclohexylcarbodiimide (DCC) method (Scheme 4). Four additional steps were required to adjust the substitution pattern at C(16) and to deprotect the indole subunit for the closure of the crucial 7‐membered ring present in the targeted alkaloid family (Schemes 4 and 5). The spectral and chiroptical properties of the final product (?)‐ 1 matched the ones reported for the naturally occurring alkaloid, which had been isolated from Tabernaemonatana quadrangularis in 1980. The overall yield of the entire synthesis involving a linear string of 20 steps amounted to 1.9% (average yield per step: 82%).  相似文献   

5.
The efficient, 12–14 step (LLS) total synthesis of (?)‐halenaquinone has been achieved. Key steps in the synthetic sequence include: (a) proline sulfonamide‐catalyzed, Yamada–Otani reaction to establish the C6 all‐carbon quaternary stereocenter, (b) multiple, novel palladium‐mediated oxidative cyclizations to introduce the furan moiety, and (c) oxidative Bergman cyclization to form the final quinone ring.  相似文献   

6.
The first enantioselective total synthesis of (−)‐deoxoapodine is described. Our synthesis of this hexacyclic aspidosperma alkaloid includes an efficient molybdenum‐catalyzed enantioselective ring‐closing metathesis reaction for the desymmetrization of an advanced intermediate that introduces the C5‐quaternary stereocenter. After C21‐oxygenation, the pentacyclic core was accessed by electrophilic C19‐amide activation and transannular spirocyclization. A biogenetically inspired dehydrative C6‐etherification reaction proved highly effective to secure the F‐ring and the fourth contiguous stereocenter of (−)‐deoxoapodine with complete stereochemical control.  相似文献   

7.
8.
For the synthesis of (?)‐diversonol (ent‐ 1 ), an enantioselective domino‐Wacker/carbonylation/methoxylation reaction and an enantioselective Wacker oxidation were used to give the chroman in high yield and 96 % and 93 % ee, respectively. Dihydroxylation at the vinyl moiety using the Sharpless procedure and a Wittig–Horner reaction followed by hydrogenation, benzylic oxidation, and an intramolecular acylation provided the tetrahydroxanthenone, from which ent‐ 1 is accessible in a few steps. Furthermore, the synthesis of the diastereomeric diversonol rac‐1,9 a‐epi‐diversonol (rac‐ 41 ) is also described.  相似文献   

9.
10.
The two epimers (?)‐ 1a and (?)‐ 1b of the macrocyclic lactam alkaloid 3‐hydroxycelacinnine with the (2R,3R) and (2R,3S) absolute configurations, respectively, were synthesized by an alternative route involving macrocyclization with the regio‐ and stereoselective oxirane‐ring opening by the terminal amino group (Schemes 2 and 6). Properly N‐protected chiral trans‐oxirane precursors provided (2R,3R)‐macrocycles after a one‐pot deprotection‐macrocyclization step under moderate dilution (0.005–0.01M ). The best yields (65–85%) were achieved with trifluoroacetyl protection. Macrocyclization of the corresponding cis‐oxiranes was unsuccessful for steric reasons. Inversion at OH? C(3) via nucleophilic displacement of the cyclic sulfamidate derivative with NaNO2 led to (2R,3S)‐macrocycles. The synthesized (?)‐(2R,3S)‐3‐hydroxycelacinnine ((?)‐ 1b ) was identical to the natural alkaloid.  相似文献   

11.
A highly enantiospecific, azide‐free synthesis of (?)‐(R)‐ and (+)‐(S)‐piperidin‐3‐ol in excellent yield was developed. The key step of the synthesis involves the enantiospecific ring openings of enantiomerically pure (R)‐ and (S)‐2‐(oxiran‐2‐ylmethyl)‐1H‐isoindole‐1,3(2H)‐diones with the diethyl malonate anion and subsequent decarboxylation.  相似文献   

12.
(+)‐(R,Z)‐5‐Muscenone ((R)‐ 1 ) was synthesized by an enantioselective aldol reaction, catalyzed by new ephedrine‐type Ti reagents (up to 70 % enantiomeric excess). Substrate‐directed diastereoselective reduction of the aldol product and Grob fragmentation of the tosylate of the resultant 1,3‐diol afforded (+)‐ 1 . This approach also gave access to (?)‐(R,E)‐5‐muscenone and (?)‐(R)‐muscone.  相似文献   

13.
An enantioselective total synthesis of martinellic acid is described. The pyrroloquinoline alkaloid core is efficiently prepared from a quinoline, employing a method which relies on a newly developed Cu‐catalyzed enantioselective alkynylation using the chiral imidazole‐based biaryl P,N ligand StackPhos to establish the absolute stereochemistry. The remaining carbon atoms are then installed by means of a diastereoselective Pd‐catalyzed decarboxylative allylation and the synthesis is completed after straightforward functional‐group manipulation. This new synthetic method enables the most concise enantioselective synthesis of this important class of molecules to date.  相似文献   

14.
15.
16.
Asymmetric syntheses of the following 17‐membered macrocyclic spermine alkaloids are presented: (−)‐(S)‐protoverbine (=(8S)‐8‐phenyl‐1,5,9,13‐tetraazacycloheptadecane‐6‐one; 1 ), (+)‐(S)‐protomethine (=(2S)‐2‐phenyl‐1,5,9,14‐tetraazabicyclo[12.3.1]octadecan‐4‐one; 2 ), (−)‐(S)‐buchnerine (=(8S)‐8‐(4‐methoxyphenyl)‐1,5,9,13‐tetraazacycloheptadecane‐6‐one; 8 ), (+)‐(S)‐verbamethine (=(+)‐(2S)‐9‐[(E)‐phenylprop‐2‐enoyl]‐2‐phenyl‐1,5,9,14‐tetraazabicyclo[12.3.1]octadecan‐4‐one; 4 ), (−)‐(S)‐verbacine (=(−)‐(8S)‐1‐[(E)‐phenylprop‐2‐enoyl]‐8‐phenyl‐1,5,9,13‐tetraazacycloheptadecan‐6‐one; 3 ), (−)‐(S)‐verbasikrine (=(−)‐(8S)‐1‐[(E)‐3‐(4‐methoxyphenyl)prop‐2‐enoyl]‐8‐phenyl‐1,5,9,13‐tetraazacycloheptadecan‐6‐one; 26 ), (−)‐(S)‐isoverbasikrine (=(−)‐(8S)‐1‐[(Z)‐3‐(4‐methoxyphenyl)prop‐2‐enoyl]‐8‐phenyl‐1,5,9,13‐tetraazacycloheptadecan‐6‐one; 25 ), (+)‐(S)‐verbamekrine (=(+)‐(2S)‐9‐[(E)‐3‐(4‐methoxyphenyl)prop‐2‐enoyl]‐2‐phenyl‐1,5,9,14‐tetraazabicyclo[12.3.1]octadecan‐4‐one; 23 ), and (+)‐(S)‐isoverbamekrine (=(+)‐(2S)‐9‐[(Z)‐3‐(4‐methoxyphenyl)prop‐2‐enoyl]‐2‐phenyl‐1,5,9,14‐tetraazabicyclo[12.3.1]octadecan‐4‐one; 24 ). Effective methods for 1H‐NMR determination of the enantiomeric purity in which (S)‐2‐hydroxy‐2‐phenylacetic acid and (S)‐2‐acetoxy‐2‐phenylacetic acid are used as shift reagents for 1, 8 , and related macrocyclic alkaloids are described.  相似文献   

17.
18.
The first total synthesis of (?)‐hosieine A was accomplished and features an unprecedented nitroso–ene cyclization to construct the 2‐azabicyclo[3.2.1]octane ring system. Phosphine‐enabled stereoselective bromohydrination provided interesting mechanistic insights into the anti‐Markovnikov process. Also noteworthy is the retention of stereochemistry at C9 in the facile radical debromination initiated by Et3B/air.  相似文献   

19.
A seven‐step enantioselective total synthesis of (?)‐terengganensine A, a complex heptacyclic monoterpene indole alkaloid, was accomplished. Key steps included: a) Noyori's catalytic enantioselective transfer hydrogenation of the iminium salt to set up the absolute configuration at the C21 position; b) a highly diastereoselective C7 benzoyloxylation with dibenzoyl peroxide under mild conditions; and c) an integrated one‐pot oxidative cleavage of cyclopentene/triple cyclization/hydrolysis sequence for the construction of the dioxa azaadamantane motif with complete control of four newly generated stereocenters.  相似文献   

20.
Blennolide A can be synthesized through an enantioselective domino‐Wacker/carbonylation/methoxylation reaction of 7 a with 96 % ee and an enantioselective Wacker oxidation of 7 b with 89 % ee. Further transformations led to the α,β‐unsaturated ester (E)‐ 17 , which was subjected to a highly selective Michael addition, introducing a methyl group to give 18 a . After a threefold oxidation and an intramolecular acylation, the tetrahydroxanthenone 4 was obtained, which could be transformed into (?)‐blennolide A (ent‐ 1 ) in a few steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号