首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulphides have been shown to be capable of quenching the excited singlet and triplet states of several aromatic hydrocarbons and their derivatives. The quenching is proposed to involve an electron transfer mechanism. The use of sulphides and amines to generate aromatic hydrocarbon radical cations from the excited states of these compounds has been utilised in order to carry out reductive decyanation reactions of cyanoaromatic hydrocarbons.  相似文献   

2.
The quenching of the excited singlet and triplet states of phenosafranine by aromatic amines, methoxybenzenes and triethanolamine was investigated in acetonitrile and methanol. The rate constants for the aromatic quenchers present a typical dependence of an electron transfer process with the one-electron redox potential of the donor. A Rehm–Weller correlation is obtained with the driving force. The fitting parameters are very similar in both solvents. The electron transfer nature of the quenching reaction is further confirmed by the detection of the radical cations of the quenchers and the semireduced form of the dye in laser flash photolysis experiments. The absorption coefficients of the transient species were estimated, and the quantum yield of the charge separation process was determined.  相似文献   

3.
Unconjugated oxidized pterins accumulate in the skin of patients suffering from vitiligo and, under UVA irradiation, photosensitize the oxidation of amino acids. In this work, we study the interaction of the singlet and triplet excited states of pterin (Ptr), the parent compound of oxidized pterins, with four oxidizable amino acids: tryptophan (Trp), tyrosine (Tyr), histidine (His) and methionine (Met). Steady‐state and time‐resolved fluorescence measurements and laser flash photolysis experiments were performed to investigate the quenching of the Ptr excited states by the amino acids in aqueous solution. The singlet excited states of Ptr are quenched by Met mainly via a dynamic process and by Trp via a combination of dynamic and static processes. His does not quench singlet excited states of Ptr, and quenching by Tyr could not be investigated due to the low solubility of this amino acid. The triplet excited states of Ptr are quenched by the four studied amino acids, and the corresponding bimolecular quenching rate constants are in the range of diffusion controlled limit. The assessment of the results in the context of the Ptr‐photosensitization of amino acids suggests that triplet excited state of Ptr is the species that initiates the photochemical processes.  相似文献   

4.
The quenching of the excited singlet and triplet states of phenosafranine by aliphatic amines was investigated in acetonitrile and methanol. The rate constants for the quenching of the excited singlet state depend on the one-electron redox potential of the amine suggesting a charge transfer process. However, for the triplet state, quenching dependence on the redox potential either is opposite to the expectation or there is not dependence at all. Moreover, in MeOH the first-order rate constant for the decay of the triplet state, k(obs) presents a downward curvature as a function of the amine concentration. This behavior was interpreted in terms of the reversible formation of an intermediate excited complex, and from a kinetic analysis the equilibrium constant K(exc) could be extracted. The log K(exc) shows a linear relationship with the pKb of the amine. On the other hand, for the triplet state quenching in acetonitrile k(obs) varies linearly with the amine concentration. Nevertheless, the quenching rate constants correlate satisfactorily with pKb and not with the redox potential. The results were interpreted in terms of a proton transfer quenching, reversible in the case of MeOH and irreversible in MeCN. This was further confirmed by the transient absorption spectra obtained by laser flash photolysis. The transient absorption immediately after the triplet state quenching could be assigned to the unprotonated form of the dye. At later times the spectrum matches the semireduced form of the dye. The overall process corresponds to a one-electron reduction of the dye mediated by the deprotonated triplet state.  相似文献   

5.
The lowest excited state of aromatic carbonyl compounds (naphthaldehydes, acetonaphthones, and 10-methylacridone) is changed from the n,pi triplet to the pi,pi singlet which becomes lower in energy than the n,pi triplet by the complexation with metal ions such as Mg(ClO(4))(2) and Sc(OTf)(3) (OTf = triflate), which act as Lewis acids. Remarkable positive shifts of the one-electron reduction potentials of the singlet excited states of the Lewis acid-carbonyl complexes (e.g., 1.3 V for the 1-naphthaldehyde-Sc(OTf)(3) complex) as compared to those of the triplet excited states of uncomplexed carbonyl compounds result in a significant increase in the redox reactivity of the Lewis acid complexes vs uncomplexed carbonyl compounds in the photoinduced electron-transfer reactions. Such enhancement of the redox reactivity of the Lewis acid complexes leads to the efficient C-C bond formation between benzyltrimethylsilane and aromatic carbonyl compounds via the Lewis-acid-promoted photoinduced electron transfer. The quantum yield determinations, the fluorescence quenching, and direct detection of the reaction intermediates by means of laser flash photolysis experiments indicate that the Lewis acid-catalyzed photoaddition reactions proceed via photoinduced electron transfer from benzyltrimethylsilane to the singlet excited states of Lewis acid-carbonyl complexes.  相似文献   

6.
The rate constants for oxygen quenching in benzene solution of the triplet states of several organic compounds with relatively high triplet energies have been measured in laser photolysis and pulse radiolysis experiments. The previously observed trend for aromatic hydrocarbons where the quenching rate constants decrease from a limiting value of about one ninth of that expected for a diffusion controlled reaction to lower values for triplet states with increasing triplet energy was not observed for the triplet states of certain aromatic ketones and amines. The higher rate constants observed, e.g. oxygen quenching of triplet N-methyl indole has kQ = 1.4 × 1010 dm3 mol?1 s?1, are interpreted as being due to the presence of low lying triplet charge-transfer states which enhance the efficiency of quenching.  相似文献   

7.
Electron transfer (ET) rate constants were determined by means of lifetime measurements for the fluorescence quenching and by laser flash photolysis for the triplet quenching of the dye eosin Y by benzoquinones in acetonitrile. The results represent a new aspect of the dependence of the rate constants with the driving force in the diffusion limit region. That is, the rate constants for singlet quenching in the highly negative region of ΔGet do not decrease as predicted by Marcus theory, but rather show a small positive dependence on the driving force. However, it is found that, in the same free energy range, the triplet rate constants are lower than those for the singlet process. They also increase with the exergonicity of the reaction, but the dependence with ΔGet is less marked than that found for the singlet reaction. Even at a Gibbs energy change of ?1.0 eV the triplet quenching rate constants do not reach the theoretical diffusion limit. The results are analyzed using the current theories for diffusion‐mediated ET reactions.  相似文献   

8.
The deactivation of the first excited S(ππ*) states of N-arylurethanes (produced upon irradiation with UV light) by emission (fluorescence), chemical reaction (photo-Fries rearrangement and fragmentation), energy transfer to quenchers, and radiationless transitions to ground and triplet states is investigated. Arylurethanes exhibit fluorescence (λf ≈ 295–350 nm, φf ≈ 10?2, τf ≈ 1–6 ns) and phosphorescencs (λp ≈ 370–410 nm). The variations of the quantum yields of the fluorescence and of the photo-Fries rearrangement of N-arylurethanes by substituents and solvents are essentially due to variations of the rate constants for the radiationless processes. Fluorescence and photo-Fries reactions can be quenched by diffusion-controlled energy transfer to aliphatic ketones. Quenching is accompanied by sensitization of the ketone fluorescence. The urethane fluorescence and photo reactions may be sensitized by aromatic hydrocarbons. The results of all the quenching and sensitization experiments demonstrate that the photo-Fries reactions of N-arylurethanes proceed via the first excited singlet states of the urethanes.  相似文献   

9.
Abstract— –Estimation of lowest excited triplet and singlet state dissociation constants of some nitro-aromatic acids and bases, from shifts in their phosphorescence and absorption spectra, respectively, indicate that intramolecular charge transfer to the nitro group is much more important in the lowest excited singlet state than in the ground or lowest excited triplet states. As a result, the effect of a nitro group on the acidity of the lowest excited singlet state of an acid or base is more exaggerated than that on the ground or lowest excited triplet state of the same compound. Furthermore, the basicity of the nitro group is greatly enhanced in the lowest excited singlet state. On this basis the increased rate of photoreduction of nitrobenzene in acidic solutions is found to be thermodynamically unfeasible in the lowest excited triplet state. Although the reaction is thermodynamically feasible in the lowest excited singlet state, the short lifetime of that state may make the reaction kinetically unfeasible. Rate-Hammett acidity profiles are therefore inadequate to alone establish the mechanism of photoreduction of nitrobenzene.  相似文献   

10.
Abstract—
The reactions of the excited states of safranine T with aliphatic amines have been studied in methanol and acetonitrile. Quenching of the singlet and triplet states occurs by different mechanisms. Whereas the former excited state is quenched by a charge-transfer mechanism, the triplet state is quenched through proton transfer from the excited dye to the amine. This process leads to the unprotonated form of the dye in the triplet state, which is later quenched by amines to form the corresponding semireduced species. The monoprotonated triplet also undergoes self-quenching in both solvents (k = 1.2 × 108 M -1 s-1).  相似文献   

11.
Zusammenfassung Anhand der Methode der Konfigurationenwechselwirkung wurde die Ladungsdichteverteilung in einer Reihe von aromatischen Aminen und N-haltigen Heteroaromaten im angeregten Singulett- und Triplettzustand untersucht. Durch die Untersuchungen wurde die Formulierung der folgenden Regel ermöglicht: im angeregten Singulett- und Triplettzustand ist die Basizität bei den Aminen wesentlich vermindert; die N-haltigen Heteroaromaten weisen im angeregten Singulettzustand eine erhöhte Basizität auf, und im Triplettzustand tritt eine Verminderung der Basizität ein.
The electron density distribution in excited singlet and triplet states of a number of aromatic amines and heterocyclic compounds containing nitrogen atoms is studied using the CI-method. The investigation allows the formulation of the following rule: in excited singlet and triplet states the amines possess significantly reduced basicity; the nitrogen heterocyclic compounds in excited singlet states increase their basicity, whereas in excited triplet states their basicity is decreased.

Résumé Au moyen de la méthode d'interaction de configuration, on a étudié la répartition de la densité électronique dans un certain nombre d'aminés aromatiques et de composés hétérocycliques azotés dans l'état excité singulet et triplet.Les études effectuées ont permis d'établir la règle suivante: à l'état excité singulet ou triplet la basicité des aminés est sensiblement réduite; la basicité des composés N-hétérocycliques augmente dans l'état excité singulet et diminue dans le triplet.
  相似文献   

12.
Photophysical properties in dilute acetonitrile solution are reported for a number of iridium(III) and rhenium(I) complexes. The nature of the lowest excited state of the complexes under investigation is either metal-to-ligand charge transfer ((3)MLCT) or a ligand centred ((3)LC) state. Rate constants, k(q), for quenching of the lowest excited states by molecular oxygen are in the range 1.5 x 10(8) to 1.4 x 10(10) M(-1) s(-1). Efficiency of singlet oxygen production, f(Delta)(T), following oxygen quenching of the lowest excited states of these complexes, are in the range of 0.27-1.00. The rate constants and the efficiency of singlet oxygen formation are quantitatively reproduced by a model that assumes the competition between a non-charge transfer (nCT) and a CT deactivation channel. The balance between CT and nCT deactivation channels, which is described by the relative contribution p(CT) of CT induced deactivation, is discussed. The kinetic model is found to be successfully applied in the case of quenching of the excited triplet states of coordination compounds by oxygen in acetonitrile, as was proposed for the quenching of pi-pi* triplet states by oxygen.  相似文献   

13.
The interaction with amino acids of the excited states of the N-oxide resazurin and its deoxygenation product resorufin, has been studied in aqueous solution at pH 7.5. Steady-state and time-resolved studies show that the fluorescence is quenched by amino acids. Complexation of the dyes in the ground state with aromatic amino acids was also observed. The singlet quenching is attributed to electron transfer from the amino acids to the excited dye based on the dependence of the bimolecular rate constants with the ionization potential of quenchers. Flash photolysis experiments allowed determination of the quenching rate constants for the triplet deactivation of dyes by several amino acids, as well as the characterization of the transients formed in the process. These data show that the triplet is also deactivated by an electron transfer process. However, the deactivation of the N-oxide dye by tryptophan can be described by a hydrogen atom transfer. The protolytic dissociation constants of the dye radical ions are reported. The irradiation of rezasurin in the presence of amino acids leads to deoxygenation of the dye to give resorufin. This process involves the triplet excited state of resazurin and is efficient only in the presence of amino acids containing the -SH group.  相似文献   

14.
The amphiphilic porphinato zinc(II) complex (ZnP) containing four substituted amphiphilic alkyl chains was embedded in the liposomes of l,2-dipalmitoyl-sn-glycero-3phosphocholine. The distance from the embedded ZnP to the outer phase was changed from 9 to 27 ? by changing the substituted alkyl chain length. The electron transfer from the excited Zn complex to methylviologen (MV2+) or benzoquinone (BQ) added in the outer aqueous phase was studied. At first, quenching reactions were analyzed based on dynamic and static reaction models of the excited state. For the MV2+ quencher, only the triplet excited state of the embedded ZnP reacted, and electron transfer occurred at a distance less than 12 ?. In BQ both the singlet and the triplet excited states reacted, and the reaction of the singlet state was a static one indicating that BQ is incorporated into the liposomes. The distribution of the BQ molecule in the quenching sphere of ZnP was presented based on calculations assuming a stepwise incorporation into the quenching sphere.  相似文献   

15.
Abstract. Pulsed laser photolysis at 347nm has been used to study the transient spectroscopy of alloxazine, lumichrome, lumiflavin, and riboflavin in acidic (pH 2.2) aqueous solution and in ethanol. Intersystem crossing quantum yields (φISC) were determined by a modification of the comparative laser excitation method which utilizes the variation of the triplet yield with intensity in conjunction with a kinetic model for the various photophysical and photochemical processes occurring during the pulse. Fluorescence quantum yields and lifetimes are also reported. Correction for quenching of the excited singlet state by H+ ions shows that, in neutral aqueous solution, intersystem crossing for flavins is an efficient process (φISC˜ 0.7) which, in conjunction with fluorescence, accounts for the fate of all absorbed photons. For alloxazine (φISC˜ 0.45) and lumichrome (φISC˜ 0.7) the results are more difficult to interpret owing to interconversion between alloxazine and isoalloxazine structures in the singlet excited state. For all four compounds, the quantum yield of products derived from the singlet excited state is estimated as ˜0.04. There is evidence of biphotonic product formation at high laser energies. In ethanol, where φISC for lumichrome is about twice that of lumiflavin, internal conversion between the excited singlet and ground states appears to be a significant process. Complete triplet-triplet absorption spectra in the region 260–750nm are reported. For lumichrome at pH 2.2 there is spectral evidence for isomeric triplet states which appear to be in equilibrium.  相似文献   

16.
1.  Molecules of acridine and chloroacridine in the triplet state form triplet exciplexes of the radical ion pair type with tertiary aromatic amines. Proton transfer from the radical cation to the radical anion with formation of neutral radicals is the basic pathway of quenching of these exciplexes in a nonsolvating medium. In the presence of an alcohol, the triplet exciplexes disappear due to protonation of the radical anion in the exciplex.
2.  Quenching of triplet states of acridine and chloroacridine by secondary aromatic amines take place by transfer of an H atom from the amine regardless of the nature of the solvent.
3.  The singlet excited state is the most probable reactive state of 9-chloroacridine in photoreduction and photosubstitution reactions with aromatic amines.
Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 2, pp. 269–275, February, 1989.  相似文献   

17.
Photophysical properties for a number ruthenium(II) and osmium(II) bipyridyl complexes are reported in dilute acetonitrile solution. The lifetimes of the excited metal to ligand charge transfer states (MLCT) of the osmium complexes are shorter than for the ruthenium complexes. Rate constants, kq, for quenching of the lowest excited metal to ligand charge transfer states by molecular oxygen are found to be in the range (1.1-7.7) x 10(9) dm3 mol(-1) s(-1). Efficiencies of singlet oxygen production, fDeltaT, following oxygen quenching of the lowest excited states of these ruthenium and osmium complexes are in the range of 0.10-0.72, lower values being associated with those compounds having lower oxidation potentials. The rate constants for quenching of the excited MLCT states, kq, are found to be generally higher for osmium complexes than for ruthenium complexes. Overall quenching rate constants, kq were found to give an inverse correlation with the energy of the excited state being quenched, and also to correlate with the oxidation potentials of the complexes. However, when the contribution of quenching due exclusively to energy transfer to produce singlet oxygen, kq1, is considered, its dependence on the energy of the excited states is more complex. Rate constants for quenching due to energy dissipation of the excited MLCT states without energy transfer, kq3, were found to show a clear correlation with the oxidation potential of the complexes. Factors affecting both the mechanism of oxygen quenching of the excited states and the efficiency of singlet oxygen generation following this quenching are discussed. These factors include the oxidation potential, the energy of the lowest excited state of the complexes and spin-orbit coupling constant of the central metal.  相似文献   

18.
Abstract— The lowest excited singlet-state dissociation constants (pKSa) of bromosubstituted pyridines, quinolines, and isoquinolines were determined from the pH-dependent shifts in their electronic absorption spectra. The lowest excited triplet-state dissociation constants (pKTa) of bromosubstituted quinolines and 4-bromoisoquinoline were obtained from the shifts of the 0–0 phosphorescence bands measured in rigid aqueous solution at 77 K. The pKSa values indicate that the basicity of these brominated nitrogen heterocycles is increased in the lowest excited singlet state by 2 to 10 orders of magnitude as compared with the ground state. The pKTa values are found to be significantly different from the corresponding ground-state pKa values, indicating that the basicity of bromoquinolines is increased in the lowest excited triplet state by 1.7 to 3.0 pK units. The enhancement of the excited singlet-and triplet-state basicity of brominated nitrogen heterocycle derivatives as compared with the unsuhstituted parent compounds is attributed to the increased electron-donor conjugative interactions of the bromine atom pπ orbitals with π orbitals in the lowest excited singlet and triplet state.  相似文献   

19.
The mechanism of eosin-sensitized photoreduction of benzil with 1-benzyl-1,4-dihydronicotinamide — a model compound of NAD(P)H and the behavior of the excited states of eosin have been investigated. The effect of anthracene as a diffusion-controlled quencher of the photoreaction indicates that both excited triplet state and an unquenchable excited singlet state of eosin participated in the sensitized photoreaction. From the Stern-Volmer plot of quantum yield vs. anthracene concentration, the triplet reaction rate constant has been calculated to be 0.78 × 108 L M?1S?1 while the singlet reaction rate constant determined from quenching of eosin fluorescence by benzil is equal to 7.2 × 109 L M?1S?1. The singlet and triplet quantum yields are also determined to be 0.09 and 0.18 respectively. Since both the singlet and triplet energies of eosin are lower than that of benzil, energy transfer sensitization is not feasible. It is proposed that electron transfer from the excited eosin to benzil is responsible for the initiation.  相似文献   

20.
Rate constants of quenching of triplet excited ketones by several monomers were determined through time‐resolved laser spectroscopy or culled from the literature. The semi‐empirical calculation method PM3 allows the quenching mechanisms to be refined and can be used to predict the reactivity of aromatic ketones toward monomers. It is apparent from both experimental results and theoretical calculations that the rate constant (kq ) measured for the bimolecular quenching between the triplet state of a given aromatic ketone and both electron‐rich as well as electron‐poor monomers, depends linearly on the free enthalpy of formation of the regioselectively favored 1,4‐biradical, which is the primary reaction step of the ketone/monomer interaction. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1785–1794, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号