首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The macrocyclic lactam alkaloid (±)‐(2R*,3R*)‐3‐hydroxycelacinnine ( 1 ) derived from spermidine was synthesized via stereoselective epoxide‐ring opening with magnesium azide and cesium carbonate promoted macrocyclization of the ditosylated diamino precursor 12 with 1,4‐dibromobutane in the two key steps (Scheme 2). 1H‐ and 13C‐NMR Signal assignments from COSY, HSQC, and HMBC 2D NMR data of the synthesized 1 were compared with the earlier‐described data of the natural 3‐hydroxycelacinnine. The similarity of their 13C‐NMR spectra point to the correctness of the proposed constitutional formula for natural 3‐hydroxycelacinnine; however, different 1H‐NMR chemical shifts and coupling constants (J(2,3)=9.0 vs. 1.2 Hz, resp.) in the α‐hydroxy‐β‐amino lactam moiety suggest that natural 3‐hydroxycelacinnine is the 2,3‐cis‐epimer of one synthetic (±)‐ 1 .  相似文献   

2.
Through photocatalysed regiospecific and stereoselective additions of cycloamines to 5‐(R)‐(l)‐menthyloxy‐2 (5H)‐furanone (3), chiral 5‐(R)‐(l)‐menthyloxy‐4‐cycloaminobutyrolactones were synthesized. In the new asymmetric photoaddition of compound 3, the N‐methyl cyclic amines (4) gave novel chiral C? C photoadducts (5) in 24–50% isolated yields with d. e. ≥ 98%. However, the secondary cyclic amines (6) afforded optically active N? C photoadducts (7) in 34–58% isolated yields with d. e. ≥ 98% under the same condition. All the synthesized optically active compounds were identified on the basis of their analytical data and spectroscopic data, such as [α]58920, IR, 1H NMR, 13C NMR, MS and elementary analysis. The photosynthesis of chiral butyrolactones and its mechanism were discussed in detail.  相似文献   

3.
N‐vinyl‐2‐pyrrolidone/methyl acrylate (V/M) copolymers were prepared by free‐radical bulk polymerization using benzoyl peroxide as an initiator. The copolymer composition of these copolymers was calculated from 1H NMR spectra. The radical reactivity ratios for N‐vinyl‐2‐pyrrolidone (V) and methyl acrylate (M) were rV = 0.09, rM = 0.44. These reactivity ratios for the copolymerization of V and M were determined using the Kelen–Tudos and nonlinear least‐squares error‐in‐variable methods. The 13C{1H} and 1H NMR spectra of these copolymers overlapped and were complex. The complete spectral assignment of the 13C and 1H NMR spectra were done with distortionless enhancement by polarization transfer and two dimensional 13C‐1H heteronuclear single quantum correlation spectroscopic experiments. The two‐dimensional 1H‐1H homonuclear total correlation spectroscopic NMR spectrum showed the various bond interactions, thus inferring the possible structure of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2225–2236, 2002  相似文献   

4.
N‐vinyl‐2‐pyrrolidone/methyl acrylate (V/M) copolymers were prepared by free‐radical bulk polymerization using benzoyl peroxide as an initiator. The copolymer composition of these copolymers was calculated from 1H NMR spectra. The radical reactivity ratios for N‐vinyl‐2‐pyrrolidone (V) and methyl acrylate (M) were rV = 0.09, rM = 0.44. These reactivity ratios for the copolymerization of V and M were determined using the Kelen–Tudos and nonlinear least‐squares error‐in‐variable methods. The 13C{1H} and 1H NMR spectra of these copolymers overlapped and were complex. The complete spectral assignment of the 13C and 1H NMR spectra were done with distortionless enhancement by polarization transfer and two dimensional 13C‐1H heteronuclear single quantum correlation spectroscopic experiments. The two‐dimensional 1H‐1H homonuclear total correlation spectroscopic NMR spectrum showed the various bond interactions, thus inferring the possible structure of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2225–2236, 2002  相似文献   

5.
Synthesis of N‐(1H‐imidazoline‐2‐yl)‐1H‐benzimidazol‐2‐amine was carried out under microwave irradiation (MWI) conditions. Dynamic 1H NMR investigation of N‐(1H‐imidazoline‐2‐yl)‐1H‐benzimidazol‐2‐amine compound was reported at temperature range of 223–333 K in DMF‐d7. Some physical parameters, such as coalescence temperature (Tc), the free energy of activation (ΔG??) and rate constant (k) values were calculated from its 1H NMR spectra at various temperatures. Electrochemical feature of this compound was investigated by cyclic (CV) and square wave voltammetry (SWV).  相似文献   

6.
The synthesis and crystal structures of two new rhenium(I) complexes obtained utilizing benzhydroxamic acid (BHAH) and 3‐hydroxyflavone (2‐phenylchromen‐4‐one, FlavH) as bidentate ligands, namely tetraethylammonium fac‐(benzhydroxamato‐κ2O,O′)bromidotricarbonylrhenate(I), (C8H20N)[ReBr(C7H6NO2)(CO)3], 1 , and fac‐aquatricarbonyl(4‐oxo‐2‐phenylchromen‐3‐olato‐κ2O,O′)rhenium(I)–3‐hydroxyflavone (1/1), [Re(C15H9O3)(CO)3(H2O)]·C15H10O3, 3 , are reported. Furthermore, the crystal structure of free 3‐hydroxyflavone, C15H10O3, 4 , was redetermined at 100 K in order to compare the packing trends and solid‐state NMR spectroscopy with that of the solvate flavone molecule in 3 . The compounds were characterized in solution by 1H and 13C NMR spectroscopy, and in the solid state by 13C NMR spectroscopy using the cross‐polarization magic angle spinning (CP/MAS) technique. Compounds 1 and 3 both crystallize in the triclinic space group P with one molecule in the asymmetric unit, while 4 crystallizes in the orthorhombic space group P212121. Molecules of 1 and 3 generate one‐dimensional chains formed through intermolecular interactions. A comparison of the coordinated 3‐hydroxyflavone ligand with the uncoordinated solvate molecule and free molecule 4 shows that the last two are virtually completely planar due to hydrogen‐bonding interactions, as opposed to the former, which is able to rotate more freely. The differences between the solid‐ and solution‐state 13C NMR spectra of 3 and 4 are ascribed to inter‐ and intramolecular interactions. The study also investigated the potential labelling of both bidentate ligands with the corresponding fac99mTc‐tricarbonyl synthon. All attempts were unsuccessful and reasons for this are provided.  相似文献   

7.
Understanding the complex thermodynamic behavior of confined amphiphilic molecules in biological or mesoporous hosts requires detailed knowledge of the stacking structures. Here, we present detailed solid‐state NMR spectroscopic investigations on 1‐butanol molecules confined in the hydrophilic mesoporous SBA‐15 host. A range of NMR spectroscopic measurements comprising of 1H spin–lattice (T1), spin–spin (T2) relaxation, 13C cross‐polarization (CP), and 1H,1H two‐dimensional nuclear Overhauser enhancement spectroscopy (1H,1H 2D NOESY) with the magic angle spinning (MAS) technique as well as static wide‐line 2H NMR spectra have been used to investigate the dynamics and to observe the stacking structure of confined 1‐butanol in SBA‐15. The results suggest that not only the molecular reorientation but also the exchange motions of confined molecules of 1‐butanol are extremely restricted in the confined space of the SBA‐15 pores. The dynamics of the confined molecules of 1‐butanol imply that the 1H,1H 2D NOESY should be an appropriate technique to observe the stacking structure of confined amphiphilc molecules. This study is the first to observe that a significant part of confined 1‐butanol molecules are orientated as tilted bilayered structures on the surface of the host SBA‐15 pores in a time‐average state by solid‐state NMR spectroscopy with the 1H,1H 2D NOESY technique.  相似文献   

8.
The Dynamic Behaviour of Hydridotris(3,5‐dimethylpyrazolyl)borate Ligand in Organopalladium(II) Complexes The new palladium(II) complexes [PdTp*(R)(PPh3)] (R = Me ( 1 ), C(O)Me ( 1 a ), p‐tol ( 2 ), C(O)p‐tol ( 2 a )) of the tridentate nitrogen ligand Tp* = [HB(3,5‐Me2pz)3] are non‐rigid molecules on the NMR time scale at room temperature. The 1H‐NMR spectra at low temperature indicate Cs‐symmetry for 1 whereas 1 a , 2 , 2 a are symmetryless (C1). The difference in temperature dependence of the 1H‐NMR spectra is not indicative of a different exchange mechanism. We postulate that in all cases an intramolecular substitution of coordinated and non‐coordinated pyrazolyl substituents takes place. We do not observe a rapid Turnstile rotation of a trigonal bipyramidal intermediate. The crystal structure analysis shows that the coordination of the palladium atom in complex 1 is planar.  相似文献   

9.
An efficient and simple method developed for the synthesis of 6‐methyl‐1,2,3,4‐tetrahydro‐N‐aryl‐2‐oxo/thio‐4‐arylpyrimidine‐5‐carboxamide derivatives ( 4a‐o ) using UO2(NO3)2.6H2O catalyst under conventional and ultrasonic conditions. The ultrasound irradiation synthesis had shown several advantages such as milder conditions, shorter reaction times and higher yields. The structures of all the newly synthesized compounds have been confirmed by FT‐IR, 1H NMR, 13C NMR and mass spectra.  相似文献   

10.
The Riemschneider reaction of 3‐thiocyanatoquinoline‐2,4(1H,3H)‐diones with conc. H2SO4 was investigated. Using different reaction conditions, 13 types of reaction products were isolated. Compounds bearing a Me, Et, or Bu group at C(3) afforded mainly [1,3]thiazolo[5,4‐c]quinoline‐2,4‐diones and 1,9b‐dihydro‐9b‐hydroxythiazolo[5,4‐c]quinoline‐2,4‐diones. In the case of the 3‐Bu derivatives of the starting compounds, C‐debutylation was also observed. If a Bn group is present at C(3), rapid C‐debenzylation of the starting thiocyanates occurred, yielding [1,3]oxathiolo[4,5‐c]quinoline‐2,4‐diones, and mixtures of mono‐, di‐, and trisulfides derived from 4‐hydroxy‐3‐sulfanylquinoline‐2‐ones. The reaction mechanism of all of the transformations is discussed. All new compounds were characterized by IR, 1H‐ and 13C‐NMR, and EI and ESI mass spectra, and in some cases, 15N‐NMR spectra were also used to characterize new compounds.  相似文献   

11.
Starting from methyl 2,3‐O‐isopropylidene‐α‐D ‐mannofuranoside ( 5 ), methyl 6‐O‐benzyl‐2,3‐O‐isopropylidene‐α‐D ‐lyxo‐hexofuranosid‐5‐ulose ( 12 ) was prepared in three steps. The addition reaction of dimethyl phosphonate to 12 , followed by deoxygenation of 5‐OH group, provided the 5‐deoxy‐5‐dimethoxyphosphinyl‐α‐D ‐mannofuranoside derivative 15a and the β‐L ‐gulofuranoside isomer 15b . Reduction of 15a and 15b with sodium dihydrobis(2‐methoxyethoxy)aluminate, followed by the action of HCl and then H2O2, afforded the D ‐mannopyranose ( 17 ) and L ‐gulopyranose analog 21 , each having a phosphinyl group in the hemiacetal ring. These were converted to the corresponding 1,2,3,4,6‐penta‐O‐acetyl‐5‐methoxyphosphinyl derivatives 19 and 23 , respectively, structures and conformations (4C1 or 1C4, resp.) of which were established by 1H‐NMR spectroscopy.  相似文献   

12.
2,4,8‐Trialkyl‐3‐thia‐1,5‐diazabicyclo[3.2.1]octanes have been obtained by the regioselective and stereoselective cyclocondensation of 1,2‐ethanediamine with aldehydes RCHO (R═Me, Et, Prn, Bun, Pentn) and H2S at molar ratio 1:3:2 at 0°C. The increase in molar ratio of thiomethylation mixture RCHO–H2S (6:4) at 40°C resulted in selective formation of bis‐(2,4,6‐trialkyl‐1,3,5‐dithiazinane‐5‐yl)ethanes. Cyclothiomethylation of aliphatic α,ω‐diamines with aldehydes RCHO (R═Me, Et) and H2S at molar ratio 1:6:4 and at 40°С led to α,ω‐bis(2,4,6‐trialkyl‐1,3,5‐dithiazinane‐5‐yl)alkanes. Stereochemistry of 2,4,8‐trialkyl‐3‐thia‐1,5‐diazabicyclo[3.2.1]octanes have been determined by means of 1H and 13С NMR spectroscopy and further supported by DFT calculations at the B3LYP/6‐31G(d,p) level. The structure of α,ω‐bis(2,4,6‐trialkyl‐1,3,5‐dithiazinane‐5‐yl)alkanes was confirmed by single‐crystal X‐ray diffraction study.  相似文献   

13.
Chitosan ( 1 ) was prepared by basic hydrolysis of chitin of an average molecular weight of 70000 Da, 1H‐NMR spectra indicating almost complete deacetylation. N‐Phthaloylation of 1 yielded the known N‐phthaloylchitosan ( 2 ), which was tritylated to provide 3a and methoxytritylated to 3b . Dephthaloylation of 3a with NH2NH2?H2O gave the 6‐O‐tritylated chitosan 4a . Similarly, 3b gave the 6‐O‐methoxytritylated 4b . CuSO4‐Catalyzed diazo transfer to 4a yielded 95% of the azide 5a , and uncatalyzed diazo transfer to 4b gave 82% of azide 5b . Further treatment of 5a with CuSO4 produced 2‐azido‐2‐deoxycellulose ( 7 ). Demethoxytritylation of 5b in HCOOH gave 2‐azido‐2‐deoxy‐3,6‐di‐O‐formylcellulose ( 6 ), which was deformylated to 7 . The 1,3‐dipolar cycloaddition of 7 to a range of phenyl‐, (phenyl)alkyl‐, and alkyl‐monosubstituted alkynes in DMSO in the presence of CuI gave the 1,2,3‐triazoles 8 – 15 in high yields.  相似文献   

14.
Syntheses and Structures of Bis(4,4′‐t‐butyl‐2,2′‐bipyridine) Ruthenium(II) Complexes with functional Derivatives of Tetramethyl‐bibenzimidazole [(tbbpy)2RuCl2] reacts with dinitro‐tetramethylbibenzimidazole ( A ) in DMF to form the complex [(tbbpy)2Ru( A )](PF6)2 ( 1a ) (tbbpy: bis(4,4′‐t‐butyl)‐2,2′bipyridine). Exchange of the two PF6? anions by a mixture of tetrafluor‐terephthalat/tetrafluor‐terephthalic acid results in the formation of 1b in which an extended hydrogen‐bonded network is formed. According to the 1H NMR spectra and X‐ray analyses of both 1a and 1b , the two nitro groups of the bibenzimidazole ligand are situated at the periphery of the complex in cis position to each other. Reduction of the nitro groups in 1a with SnCl2/HCl results in the corresponding diamino complex 2 which is a useful starting product for further functionalization reactions. Substitution of the two amino groups in 2 by bromide or iodide via Sandmeyer reaction results in the crystalline complexes [(tbbpy)2Ru( C )](PF6)2 and [(tbbpy)2Ru( D )](PF6)2 ( C : dibromo‐tetrabibenzimidazole, D : diiodo‐tetrabibenzimidazole). Furthermore, 2 readily reacts with 4‐t‐butyl‐salicylaldehyde or pyridine‐2‐carbaldehyde under formation of the corresponding Schiff base RuII complexes 5 and 6 . 1H NMR spectra show that the substituents (NH2, Br, I, azomethines) in 2 ‐ 6 are also situated in peripheral positions, cis to each other. The solid state structure of both 2 , and 3 , determined by X‐ray analyses confirm this structure. In addition, the X‐ray diffraction analyses of single crystals of the complexes [(tri‐t‐butyl‐terpy)(Cl)Ru( A )] ( 7 ) and [( A )PtCl2] ( 8 ) display also that the nitro groups in these complexes are in a cis‐arrangement.  相似文献   

15.
A series of 2‐amino‐7‐methoxy‐4‐aryl‐4H‐chromene‐3‐carbonitrile compounds 2 were obtained by condensation of 3‐methoxyphenol with β‐dicyanostyrenes 1 in absolute ethanol containing piperidine. The intermediate enamines 3 were prepared by compounds 2 with 5‐substituted‐1,3‐cyclohexanedione using p‐toluenesuflonic acid (TsOH) as catalyst. The title compounds 11‐amino‐3‐methoxy‐8‐substituted‐12‐aryl‐8,9‐dihydro‐7H‐chromeno[2,3‐b]quinolin‐10(12H)‐one 4 were synthesized by cyclization of the intermediate enamines 3 in THF with K2CO3 /Cu2Cl2 as catalyst. The structures of all compounds were characterized by elemental analysis, IR, MS, and 1H NMR spectra. The crystal structure of compound 4i was determined by single‐crystal X‐ray diffraction analysis.  相似文献   

16.
An uncharacterized terpene cyclase from Streptomyces pratensis was identified as (+)‐(1(10)E,4E,6S,7R)‐germacradien‐6‐ol synthase. The enzyme product exists as two interconvertible conformers, resulting in complex NMR spectra. For the complete assignment of NMR data, all fifteen (13C1)FPP isotopomers (FPP=farnesyl diphosphate) and (13C15)FPP were synthesized and enzymatically converted. The products were analyzed using various NMR techniques, including 13C, 13C COSY experiments. The (13C)FPP isotopomers were also used to investigate the thermal rearrangement and EI fragmentation of the enzyme product.  相似文献   

17.
This paper describes the development of novel aromatic platforms for supramolecular construction. By the Suzuki cross‐coupling protocol, a variety of functionalized m‐terphenyl derivatives were prepared (Schemes 1–4). Macrolactamization of bis(ammonium salt) (S,S)‐ 6 with bis(acyl halide) 7 afforded the macrocyclic receptor (S,S)‐ 2 (Scheme 1), which was shown by 1H‐NMR titration studies to form ‘nesting' complexes of moderate stability (Ka between 130 and 290 M ?1, 300 K) with octyl glucosides 13 – 15 (Fig. 2) in the noncompetitive solvent CDCl3. Suzuki cross‐coupling starting from 3,3′,5,5′‐tetrabromo‐1,1′‐biphenyl provided access to a novel series of extended aromatic platforms (Scheme 5) for cleft‐type (Fig. 1) and macrotricyclic receptors such as (S,S,S,S)‐ 1 . Although mass‐spectral evidence for the formation of (S,S,S,S)‐ 1 by macrolactamization between the two functionalized 3,3′,5,5′‐tetraaryl‐1,1′‐biphenyl derivatives (S,S)‐ 33 and 36 was obtained, the 1H‐ and 13C‐NMR spectra of purified material remained rather inconclusive with respect to both purity and constitution. The versatile access to the novel, differentially functionalized 3,3′,5,5′‐tetrabromo‐1,1′‐biphenyl platforms should ensure their wide use in future supramolecular construction.  相似文献   

18.
The possible stable forms and molecular structures of 1‐cyclohexylpiperazine (1‐chpp) and 1‐(4‐pyridyl)piperazine (1‐4pypp) molecules have been studied experimentally and theoretically using nuclear magnetic resonance(NMR) spectroscopy. 13C, 15N cross‐polarization magic‐angle spinning NMR and liquid phase1H, 13C, DEPT, COSY, HETCOR and INADEQUATE NMR spectra of 1‐chpp (C10H20N2) and 1‐4pypp (C9H13N2) have been reported. Solvent effects on nuclear magnetic shielding tensors have been investigated using CDCl3, CD3 OD, dimethylsulfoxide (DMSO)‐d6, (CD3)2CO, D2O and CD2Cl2. 1H and 13C NMR chemical shifts have been calculated for the most stable two conformers, equatorial–equatorial (e–e) and axial–equatorial (a–e) forms of 1‐chpp and 1‐4pypp using B3LYP/6‐311++G(d,p)//6‐31G(d) level of theory. Results from experimental and theoretical data showed that the molecular geometry and the mole fractions of stable conformers of both molecules are solvent dependent. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Isotopic effect on tautomeric behaviors of the synthesized 5‐phenoxy‐ (1a), 5‐(2,6‐dimethylphenoxy)‐ (1b), 5‐(2,6‐diisopropylphenoxy)‐ (1c), 5‐(2,6‐dimethoxyphenoxy)‐ (1d) and 5‐(4‐methylphenoxy)‐tetrazole (1e) were investigated in DMSO‐d6 by adding one drop of D2O. Among 1a–e, 1a, 1d and 1e show small rotational barrier around C5? O1 and O1? C6 while in 1b and 1c there are distinguishable rotational barrier about that bonds. The 1H NMR spectra of 1b and 1c show slightly different chemical shifts for two methyl and isopropyl groups on those phenyl ring, respectively, while the chemical shifts difference (Δδ) between two methyl and two isopropyl groups were enhanced by adding D2O. The 13C NMR spectra of 1b show two overlapped singlets for methyl groups after adding D2O. Representatively, the calculations of compound 1c were performed with GAUSSIAN‐03and the rotational barrier about C5? O1 and between isopropyl group and phenyl ring in 1c was calculated with B3LYP/6‐31G(d) basis set. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The study of inter‐conversion between molecules, especially biologically and pharmaceutically important molecules, is extremely important. This study reports the inter‐conversion between two azo‐derivtives: azo‐6‐aminouracils to azo‐barbituric acids. We successfully converted the 1,3‐dimethyl‐5‐(arylazo)‐6‐aminouracils ( Uazo‐1 to Uazo‐4 ) to 1,3‐dimethyl‐5‐(arylazo)‐barbituric acids ( BAazo‐1 to BAazo‐4 ) (where aryl?C6H5‐( 1 ); p‐MeC6H4‐( 2 ), p‐ClC6H4‐( 3 ), and p‐NO2C6H4‐( 4 )) following an acid‐hydrolysis path. The products were characterized using spectroscopic tools like UV‐vis, IR, and NMR spectroscopy. UV‐vis spectra of the as‐prepared dyes reveal that in contrast to the azo‐6‐aminouracils they are hardly responsive towards solvatochromism. IR spectra exhibit three characteristic >C?O frequencies for as‐prepared azobarbituric acids instead of two for mother azo‐6‐aminouracils. 1H NMR spectra which reflect the existence of solution species evidence the absence of >C?NH group (characteristic imido‐H at the 6‐position of hydrazone species of azo‐6‐aminouracils) and consequence presence of >C?O group at the same position in as‐prepared azobarbituric acids. They exhibit structural emissions in the range of 400–440 nm upon excitation at 360 nm. The determined acid dissociation constant (pKa) values of BAazos increase according to the following sequence: BAazo ‐ 2 > 1 > 3 > 4 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号