首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The design of photoactive functionalized electrodes for the sensitive transduction of double‐stranded DNA hybridization is reported. Multifunctional complex [Ru(bpy‐pyrrole)2(dppn)]2+ (bpy‐pyrrole=4‐methyl‐4′‐butylpyrrole‐2,2′‐bipyridine, dppn=benzo[i]dipyrido[3,2‐a:2′,3′‐c]phenazine) exhibiting photosensitive, DNA‐intercalating, and electropolymerizable properties was synthesized and characterized. The pyrrole groups undergo oxidative electropolymerization on planar electrodes forming a metallopolymer layer on the electrode. Thanks to the photoelectrochemical and intercalating properties of the immobilized RuII complex, the binding of a double‐stranded HIV DNA target was photoelectrochemically detected on planar electrodes. Photocurrent generation through visible irradiation was correlated to the interaction between double‐stranded DNA and the metallointercalator polymer. These interactions were well fitted by using a Langmuir isotherm, which allowed a dissociation constant of 2×106 L mol?1 to be estimated. The low detection limit of 1 fmol L?1 and sensitivity of 0.01 units per decade demonstrate excellent suitability of these modified electrodes for detection of duplex DNA.  相似文献   

2.
The interaction of a series of chiral cationic [4]helicene derivatives, which differ by their substituents, with double‐stranded DNA has been investigated by using a combination of spectroscopic techniques, including time‐resolved fluorescence, fluorescence anisotropy, and linear dichroism. Addition of DNA to helicene solutions results to a hypochromic shift of the visible absorption bands, an increase of fluorescence quantum yield and lifetime, a slowing down of fluorescence anisotropy decay, and a linear dichroism in flow‐oriented DNA, which unambiguously points to the binding of these dyes to DNA. Both helicene monomers and dimeric aggregates, which form at higher concentration, bind to DNA, the former most probably upon intercalation and the latter upon groove binding. The binding constant depends substantially on the dye substituents and is, in all cases, larger with the M than the P enantiomer, by factors ranging from 1.2 to 2.3, depending on the dye.  相似文献   

3.
4.
Disclosed herein is the visible‐light‐promoted deaminative C(sp3)?H alkylation of glycine and peptides using Katritzky salts as electrophiles. Simple reaction conditions and excellent functional‐group tolerance provide a general strategy for the efficient preparation of unnatural α‐amino acids and precise modification of peptides with unnatural α‐amino‐acid residues. Mechanistic studies suggest that visible‐light‐promoted intermolecular charge transfer within a glycine–Katritzky salt electron donor‐acceptor (EDA) complex induces a single‐electron transfer process without the assistance of photocatalyst.  相似文献   

5.
6.
Saccharides recognition is challenging due to their low affinity for substrates, yet this recognition is critical for human immunity and glycobiology. Herein, we demonstrate that a polymer or surfactant corona phase surrounding a single‐walled carbon nanotube can substantially modify the selectivity of pre‐adsorbed phenyl‐boronic acids (PBA) for mono‐, di‐, and poly‐saccharides. A library of 17 PBAs including carboxy, nitro, and amino PBA with ortho‐, meta‐, or para‐ substitutions are used to generate 144 distinct corona phases. Six in particular demonstrate significantly increased selectivity to specific saccharides including ribose (0.42 mol per total mol), arabinose (0.36), and glucose (0.25), but unusually diminished binding to fructose (0.02). Recognition proceeds by saccharide adsorption into the corona, followed by PBA reaction in a consecutive second order reaction. The results extend to larger saccharides, such as glycosaminoglycans, suggesting promise for protein glycosylation.  相似文献   

7.
Complex stability constants (K S), standard molar enthalpy changes (ΔH°) and entropy changes (TΔS°) for the inclusion complexation of native β-cyclodextrin (β-CD) (1) and some modified β-CDs, i.e., mono(6-ethylenediamino-6-deoxy)-β-CD (3), mono[6-diethylenetriamino-6-deoxy]-β-CD (4) and their corresponding copper complexes 5 and 6, with four representative bile acid guests, i.e., cholate (CA), deoxycholate (DCA), glycocholate (GCA) and taurocholate (TCA), were determined at 25 °C in aqueous phosphate buffer solution (pH 7.20) by means of isothermal titration microcalorimetry (ITC). The stoichiometry of resulting inclusion complexes between CDs and bile acids was demonstrated by UV and conductivity as well as ITC experiments, showing 1:1 binding model upon all inclusion complexation except for metal-mediated dimer 5. The complex stability constants for modified β-CD 24 are dramatically magnified with the extended length of amino tether. As compared with 3 and 4, copper(II) complexes 5 and 6 significantly enhance not only binding ability but also molecular selectivity toward bile guest molecule CA through multipoint recognition, but decreased complexes stability toward TCA could be attributed to the decreased hydrophobic microenvironment of CDs cavity due to the introduction of copper(II) coordination center. Thermodynamically, the resulting complexes between hosts and bile guests are driven absolutely by enthalpy, accompanied by entropy gain or loss. Using the present data and those previously reported for mono(6-amino-6-deoxy)-β-CD (2), thermodynamic behavior and enhanced molecular selectivity could be discussed from the viewpoint of hydrophobic interactions, electrostatic cooperation and van der Waals between the hosts and guests.  相似文献   

8.
9.
The site‐selective functionalization of unactivated C(sp3)?H bonds remains one of the greatest challenges in organic synthesis. Herein, we report on the site‐selective δ‐C(sp3)?H alkylation of amino acids and peptides with maleimides via a kinetically less favored six‐membered palladacycle in the presence of more accessible γ‐C(sp3)?H bonds. Experimental studies revealed that C?H bond cleavage occurs reversibly and preferentially at γ‐methyl over δ‐methyl C?H bonds while the subsequent alkylation proceeds exclusively at the six‐membered palladacycle that is generated by δ‐C?H activation. The selectivity can be explained by the Curtin–Hammett principle. The exceptional compatibility of this alkylation with various oligopeptides renders this procedure valuable for late‐stage peptide modifications. Notably, this process is also the first palladium(II)‐catalyzed Michael‐type alkylation reaction that proceeds through C(sp3)?H activation.  相似文献   

10.
11.
A new Schiff‐base ligand having a potentially coordinating thioether group (2‐quinoline‐N‐(2′‐methylthiophenyl)methyleneimine, qmtpm ) has been prepared. The synthesis, structure, UV‐Vis and EPR studies of one copper(II) and two cobalt(II) complexes from this ligand is reported. The X‐ray structures of the CuII and CoII chlorido complexes 1 and 2 reveal the metal atoms in highly distorted square‐pyramidal environments constituted of one tridentate ligand and two anions. On the other hand, the thiocyanato CoII compound 3 exhibits a distorted trigonal‐bipyramidal structure. These structural variations are apparently due to the different counter‐ions which leads to distinct lattice interactions. The spectroscopic data obtained by EPR and UV‐Vis investigations are in agreement with the solid‐state structures of the coordination compounds.  相似文献   

12.
13.
Methods for the chemoselective modification of amino acids and peptides are powerful techniques in biomolecular chemistry. Among other applications, they enable the total synthesis of artificial peptides. In recent years, significant momentum has been gained by exploiting palladium‐catalyzed cross‐coupling for peptide modification. Despite major advances, the prefunctionalization elements on the coupling partners translate into undesired byproduct formation and lengthy synthetic operations. In sharp contrast, we herein illustrate the unprecedented use of versatile ruthenium(II)carboxylate catalysis for the step‐economical late‐stage diversification of α‐ and β‐amino acids, as well as peptides, through chemo‐selective C−H arylation under racemization‐free reaction conditions. The ligand‐accelerated C−H activation strategy proved water‐tolerant and set the stage for direct fluorescence labelling as well as various modes of peptide ligation with excellent levels of positional selectivity in a bioorthogonal fashion. The synthetic utility of our approach is further demonstrated by twofold C−H arylations for the complexity‐increasing assembly of artificial peptides within a multicatalytic C−H activation manifold.  相似文献   

14.
15.
MOGHIMI  Ali 《中国化学》2007,25(10):1536-1541
Silica gel-loaded (E)-N-(1-thien-2'-ylethylidene)-1,2-phenylenediamine (TEPDA) phase was synthesized based on physical adsorption approaches. The stability of a chemically modified TEPDA especially in concentrated hydrochloric acid that was then used as a recycling and preconcentration reagent allowed the further uses of silica gel-loaded immobilized TEPDA phase. The application of this silica gel-loaded phase to sorption of a series of metal ions was performed by using different controlling factors such as the pH of the metal ion solution and the equilibration shaking time by the static technique. This difference was interpreted on the basis of selectivity incorporated in these sulfur containing silica gel-loaded TEPDA phases. Hg(Ⅱ) was found to exhibit the highest affinity towards extraction by these silica gel-loaded TEPDA phases. The pronounced selectivity was also confirmed by the determined distribution coefficients (Kd) of all the metal ions, showing the highest value reported for mercury(Ⅱ) extraction by the silica gel immobilized TEPDA phase. The potential applications of the silica gel immobilized TEPDA phase to selective extraction of mercury(Ⅱ) from aqueous solution were successfully accomplished and preconcentration of low concentration of Hg(Ⅱ) (30 pg·mL^-1) from natural tap water with a preconcentration factor of 200 for Hg(Ⅱ) off-line analysis was conducted by cold vapor atomic absorption analysis.  相似文献   

16.
Ethers are of fundamental importance in organic chemistry and they are an integral part of valuable flavors, fragrances, and numerous bioactive compounds. In general, the reduction of esters constitutes the most straightforward preparation of ethers. Unfortunately, this transformation requires large amounts of metal hydrides. Presented herein is a bifunctional catalyst system, consisting of Ru/phosphine complex and aluminum triflate, which allows selective synthesis of ethers by hydrogenation of esters or carboxylic acids. Different lactones were reduced in good yields to the desired products. Even challenging aromatic and aliphatic esters were reduced to the desired products. Notably, the in situ formed catalyst can be reused several times without any significant loss of activity.  相似文献   

17.
Layered‐double‐hydroxide‐supported nanorhodium catalyst (LDH? Rh(0)) was employed in the Heck‐type coupling of alkenes 1 with arylboronic acids 2 to afford the corresponding substituted alkenes 3 in good to high yields (Table 1). The catalyst was separated by simple filtration and reused for five cycles with consistent activity.  相似文献   

18.
19.
Dipalladium complexes of a cyclic bis(diimine) ligand with a double‐decker structure catalyze polymerization of ethylene and α‐olefins and copolymerization of ethylene with 1‐hexene. The polymerization of 1‐hexene yields a polymer that is mainly composed of the hexamethylene unit formed by 2,1‐insertion of the monomer into the palladium–carbon bond, followed by chain‐walking (6,1‐insertion). The polymerization of 4‐methyl‐1‐pentene proceeds by 2,1‐insertion with a selectivity of 92–97 %, and affords the polymer with methyl and 2‐methylhexyl branches. 2,1‐Insertion occurs selectively in all of the polymerization reactions of α‐olefins catalyzed by the dipalladium complexes. Ethylene polymerization with the catalyst at 100 °C lasts over 24 h, whereas the monopalladium–diimine catalyst loses its activity within 8 h at 60 °C. Polyethylene obtained by the dipalladium catalyst is less‐branched and has a higher molecular weight compared to that of the monopalladium catalyst under the same conditions. Copolymerization of ethylene with 1‐hexene affords solid products with melting points and molecular weights that vary depending on the polymerization time, suggesting formation of a block and/or gradient copolymer.  相似文献   

20.
A novel modified carbon fiber microelectrode (CFME) was obtained by combination of tetrasulfonated nickel phtalocyanine (pNiTSPc) electroformed film associated to para‐phenylenediamine (p‐PPD) electropolymerized outer‐coating. The modified CFMEs where denoted C/pNiTSPc and C/pNiTSPc/p‐PPD, respectively. These electrodes are dedicated to the organophosphates compounds (OPs) methyl‐parathion (MPT) and para‐nitrophenol (PNP). Our contribution shows that both OPs can be determined simultaneously on the unmodified and modified C/pNiTSPc CFMEs. A clear electrocatalytic activity towards both MPT and PNP redox process was observed, for the first time, in presence of pNiTSPc. The obtained sensitivity for the C/pNiTSPc CFME was 80 nA L mg?1 in the concentration range 0.01 to 10 mg/L with a detection limit of 40 μg/L. Also the combination of pNiTSPc and p‐PPD electrodeposited films show, for the first time, the possibility to discriminate on the C/pNiTSPc/p‐PPD CFME between MPT and PNP. Stability experiments were also conducted for 3 weeks in acetate buffer showing a good reproductibility of the sensitivity to PNP vs. time in presence of MPT with a little loss of sensitivity (5%) after 3 weeks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号