首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The chloro­form solvate of uncarine C (pteropodine), (1′S,3R,4′aS,5′aS,10′aS)‐1,2,5′,5′a,7′,8′,10′,10′a‐octa­hydro‐1′‐methyl‐2‐oxospiro­[3H‐indole‐3,6′(4′aH)‐[1H]­pyrano­[3,4‐f]indolizine]‐4′‐carboxyl­ic acid methyl ester, C21H24N2O4·CHCl3, has an absolute configuration with the spiro C atom in the R configuration. Its epimer at the spiro C atom, uncarine E (isopteropodine), (1′S,3S,4′aS,5′aS,10′aS)‐1,2,5′,5′a,7′,8′,10′,10′a‐octahydro‐1′‐methyl‐2‐oxospiro[3H‐indole‐3,6′(4′aH)‐[1H]pyrano[3,4‐f]indolizine]‐4′‐carboxylic acid methyl ester, C21H24N2O4, has Z′ = 3, with no solvent. Both form intermolecular hydrogen bonds involving only the ox­indole, with N?O distances in the range 2.759 (4)–2.894 (5) Å.  相似文献   

2.
Phthalides are frequently found in naturally occurring substances and exhibit a broad spectrum of biological activities. In the search for compounds with insecticidal activity, phthalides have been used as versatile building blocks for the syntheses of novel potential agrochemicals. In our work, the Diels–Alder reaction between furan‐2(5H)‐one and cyclopentadiene was used successfully to obtain (3aR,4S,7R,7aS)‐3a,4,7,7a‐tetrahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one and (3aS,4R,7S,7aR)‐3a,4,7,7a‐tetrahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one ( 2 ) and (3aS,4S,7R,7aR)‐3a,4,7,7a‐tetrahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one and (3aR,4R,7S,7aS)‐3a,4,7,7a‐tetrahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one ( 3 ). The endo adduct ( 2 ) was brominated to afford (3aR,4R,5R,7R,7aS,8R)‐5,8‐dibromohexahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one and (3aS,4S,5S,7S,7aR,8S)‐5,8‐dibromohexahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one ( 4 ) and (3aS,4R,5R,6S,7S,7aR)‐5,6‐dibromohexahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one and (3aR,4S,5S,6R,7R,7aS)‐5,6‐dibromohexahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one ( 5 ). Following the initial analysis of the NMR spectra and the proposed two novel unforeseen products, we have decided to fully analyze the classical and non‐classical assay structures with the aid of computational calculations. Computation to predict the 13C and 1H chemical shifts for mean absolute error analyses have been carried out by gauge‐including atomic orbital method at M06‐2X/6‐31+G(d,p) and B3LYP/6‐311+G(2d,p) levels of theory for all viable conformers. Characterization of the novel unforeseen compounds ( 4 ) and ( 5 ) were not possible by employing only the experimental NMR data; however, a more conclusive structural identification was performed by comparing the experimental and theoretical 1H and 13C chemical shifts by mean absolute error and DP4 probability analyses. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Circular dichroism (CD) spectroscopy was used to distinguish between the isomeric (all‐E)‐configured 3′‐epilutein ( 2 ) and 6′‐epilutein ( 8 ) to establish the absolute configuration of epilutein samples of different (natural and semisynthetic) origin, including samples of 2 obtained from thermally processed sorrel. Thus, the CD data of lutein ( 1 ) and epilutein samples ( 2 ) were compared. Our results unambiguously confirmed the (3R,3′S,6′R)‐configuration of all epilutein samples. Compound 2 was thoroughly characterized, and its 13C‐NMR data are published herewith for the first time.  相似文献   

4.
The stereochemistry of the iridoid plumeridoid C, C15H18O7, was established by X‐ray single‐crystal structure analysis, giving (2′R,3R,4R,4aS,7aR)‐methyl 3‐hydroxy‐4′‐[(S)‐1‐hydroxyethyl]‐5′‐oxo‐3,4,4a,7a‐tetrahydro‐1H,5′H‐spiro[cyclopenta[c]pyran‐7,2′‐furan]‐4‐carboxylate. The absolute structure of the title compound was determined on the basis of the Flack x parameter and Bayesian statistics on Bijvoet differences. The hydrogen‐bond donor and acceptor functions of the two hydroxy groups are employed in the formation of O—H...O‐bonded helical chains.  相似文献   

5.
A low‐temperature structure of ginkgolide A monohydrate, (1R,3S,3aS,4R,6aR,7aR,7bR,8S,10aS,11aS)‐3‐(1,1‐dimethylethyl)‐hexa­hydro‐4,7b‐di­hydroxy‐8‐methyl‐9H‐1,7a‐epoxymethano‐1H,6aH‐cyclo­penta­[c]­furo­[2,3‐b]­furo­[3′,2′:3,4]­cyclopenta­[1,2‐d]­furan‐5,9,12(4H)‐trione monohydrate, C20H24O9·H2O, obtained from Mo Kα data, is a factor of three more precise than the previous room‐temperature determination. A refinement of the ginkgolide A monohydrate structure with Cu Kα data has allowed the assignment of the absolute configuration of the series of compounds. Ginkgolide C sesquihydrate, (1S,2R,3S,3aS,4R,6aR,7aR,7bR,8S,10aS,11S,11aR)‐3‐(1,1‐di­methyl­ethyl)‐hexa­hydro‐2,4,7b,11‐tetrahydroxy‐8‐methyl‐9H‐1,7a‐epoxy­methano‐1H,6aH‐cyclopenta­[c]­furo­[2,3‐b]­furo­[3′,2′:3,4]­cyclo­penta­[1,2‐d]­furan‐5,9,12(4H)‐trione sesquihydrate, C20H24O11·1.5H2O, has two independent diterpene mol­ecules, both of which exhibit intramolecular hydrogen bonding between OH groups. Ginkgolide J dihydrate, (1S,2R,3S,3aS,4R,6aR,7aR,7bR,8S,10aS,11aS)‐3‐(1,1‐di­methyl­ethyl)‐hexa­hydro‐2,4,7b‐tri­hydroxy‐8‐methyl‐9H‐1,7a‐epoxy­methano‐1H,6aH‐cyclo­penta­[c]­furo­[2,3‐b]furo[3′,2′:3,4]­cyclo­penta­[1,2‐d]­furan‐5,9,12(4H)‐trione dihydrate, C20H24O10·2H2O, has the same basic skeleton as the other ginkgolides, with its three OH groups having the same configurations as those in ginkgolide C. The conformations of the six five‐membered rings are quite similar across ­ginkgolides A–C and J, except for the A and F rings of ginkgolide A.  相似文献   

6.
A new iridoid glycoside, methyl (3R,4R,4aS,7S,7aR)‐3‐hydroxy‐7‐methyl‐5‐oxooctahydrocyclopenta[c]pyran‐4‐carboxylate‐3‐O‐β‐d ‐(1′S,2′R,3′S,4′S,5′R)‐glucopyranoside, named loniceroside A, C17H26O10, ( 1 ), was obtained from the aerial parts of Lonicera saccata. Its structure was established based on an analysis of spectroscopic data, including 1D NMR, 2D NMR and HRESIMS, and the configurations of the chiral C atoms were determined by X‐ray crystallographic analysis. The single‐crystal structure reveals that the cyclopenta[c]pyran scaffold is formed from a five‐membered ring and a chair‐like six‐membered ring connected through two bridgehead chiral C atoms. In the solid state, the glucose group of ( 1 ) plays an important role in constructing an unusual supramolecular motif. The structure analysis revealed adjacent molecules linked together through intermolecular O—H…O hydrogen bonds to generate a banded structure. Furthermore, the banded structures are linked into a three‐dimensional network by interesting hydrogen bonds. Biogenetically, compound ( 1 ) carries a glucopyranosyloxy moiety at the C‐3 position, representing a rare structural feature for naturally occurring iridoid glycosides. The growth inhibitory effects against human cervical carcinoma cells (Hela), human lung adenocarcinoma cells (A549), human acute mononuclear granulocyte leukaemia (THP‐1) and the human liver hepatocellular carcinoma cell line (HepG2) were evaluated by the MTT method.  相似文献   

7.
Alopecurin A, an alkaloid with an unprecedented skeleton, was isolated from the seeds of Sophora alopecuroides L. The absolute configuration and structure of this compound was identified as (3S,12R)‐3‐hydroxy‐1,7‐diazatricyclo[10.4.0.13,7]heptadecane‐11,16,17‐trione (=(7S,15aR)‐decahydro‐7‐hydroxy‐6H‐7,11‐methano‐4H‐pyrido[1,2‐a][1,7]diazacyclododecine‐4,15,16(12H)‐trione). The structure and absolute configuration was elucidated by spectroscopic methods, mainly HR‐ESI‐TOF‐MS, IR, 1D‐NMR (1H‐ and 13C‐NMR), 2D‐NMR (COSY, NOESY, HSQC, HMBC), and particularly X‐ray crystal‐diffraction and CD spectral analysis.  相似文献   

8.
1,4-Diphenyl-2,3-dioxabicyclo[2.2.1]hept-5-ene ( 2 ), on treatment with a catalytic amount of trimethylsilyl trifluoromethanesulfonate (Me3SiOTf) in CH2Cl2 at ?78°, reacts with excess (?)-menthone ( 10 ) to give (1S,2S,4′aS,5R,7′aS)-4′a,7′a-dihydro-2-isopropyl-5-methyl-6′,7′-diphenylspiro[cyclohexane-1,3′-[7′H]cyclopenta-[1,2,4]trioxine] ( 11 ) and its (1R,2S,4′aR,5R,7′aR)-diastereoisomer 12 in a 1:1 ratio and in 21% yield. Repeating the reaction with 1.1 equiv. of Me3SiOTf with respect to 2 affords 11 , 12 , and (1S,2S,3′a.R,5R,6′aS)-3′a,6′a-dihydro-2-isopropyl-5-methyl-3′a-phenoxy-5′-phenylspiro[cyclohexane-l,2′-[4′H]cyclopenta[1,3]dioxole] ( 13 ) together with its(1R,2S,3′aS,5R,6′aR)-diastereoisomer 14 in a ratio of 3:3:3:1 and in 56% yield. (+)-Nopinone( 15 ) in excess reacts with 2 in the presence of 1.1 equiv. of Me3SiOTf to give a pair of 1,2,4-trioxanes ( 16 and 17 ) analogous to 11 and 12 , and a pair of 1,3-dioxolanes ( 18 and 19 ) analogous to 13 and 14 , in a ratio of 8:2:3:3 and in 85% yield. (?)-Carvone and racemic 2-(tert-butyl)cyclohexanone under the same conditions behave like 15 and deliver pairs of diastereoisomeric trioxanes and dioxolanes. In general, catalytic amounts of Me3SiOTf give rise to trioxanes, whereas 1.5 equiv. overwhelmingly engender dioxolanes. Adamantan-2-one combines with 2 giving only (4′aRS,7′aRS)-4′a,7′a-dihydro-6′.7′a-diphenylspiro[adamantane-2,3′-[7′H]cyclopenta[1,2,4]trioxine] in 98% yield regardless of the amount of Me3SiOTf used. The reaction of 1,4-dipheny 1-2,3-dioxabicyclo[2.2.2]oct-5-ene ( 32 ) with 10 and 1.1 equiv. of Me3SiOTf produces only the pair of trioxanes 33 and 34 homologous to 11 and 12 . Treatment of the (S,S)-diastereoisomer 33 with Zn and AcOH furnishes (1S,2S)-1,4-diphenylcyclohex-3-ene-1,2-diol. The crystal structures of 11 – 13 and 16 are obtained by X-ray analysis. The reaction courses of 10 and the other chiral cyclohexanones with prochiral endoperoxides 2 and 32 to give trioxanes are rationalized in terms of the respective enantiomeric silylperoxy cations which are completely differentiated by the si and re faces of the ketone function. The origin of the 1,3-dioxolanes is ascribed to 1,2 rearrangement of the corresponding trioxanes, which occurs with retention of configuration of the angular substituent.  相似文献   

9.
The synthesis of novel unsymmetrically 2,2‐disubstituted 2H‐azirin‐3‐amines with chiral auxiliary amino groups is described. Chromatographic separation of the mixture of diastereoisomers yielded (1′R,2S)‐ 2a , b and (1′R,2R)‐ 2a , b (c.f. Scheme 1 and Table 1), which are synthons for (S)‐ and (R)‐2‐methyltyrosine and 2‐methyl‐3′,4′‐dihydroxyphenylalanine. Another new synthon 2c , i.e., a synthon for 2‐(azidomethyl)alanine, was prepared but could not be separated into its pure diastereoisomers. The reaction of 2 with thiobenzoic acid, benzoic acid, and the amino acid Fmoc‐Val‐OH yielded the monothiodiamides 11 , the diamides 12 (cf. Scheme 3 and Table 3), and the dipeptides 13 (cf. Scheme 4 and Table 4), respectively. From 13 , each protecting group was removed selectively under standard conditions (cf. Schemes 5–7 and Tables 5–6). The configuration at C(2) of the amino acid derivatives (1R,1′R)‐ 11a , (1R,1′R)‐ 11b , (1S,1′R)‐ 12b , and (1R,1′R)‐ 12b was determined by X‐ray crystallography relative to the known configuration of the chiral auxiliary group.  相似文献   

10.
The enantioselective total synthesis of (+)‐gracilamine ( 1 ) is described. The strategy features a diastereoselective phenolic coupling reaction followed by a regioselective intramolecular aza‐Michael reaction to construct the ABCE ring system. The configuration at C3a in 1 was controlled by the stereocenter at C9a, which was selectively generated (91 % ee) by an organocatalytic enantioselective aza‐Friedel–Crafts reaction developed by our research group. This synthesis revealed that the absolute configuration of (+)‐gracilamine is 3aR, 4S, 5S, 6R, 7aS, 8R, 9aS.  相似文献   

11.
The two new gem‐dihalogeno­cyclo­propanes (1′S,3R)‐3‐(2′,2′‐di­chloro‐1′‐methyl­cyclo­propyl)‐6‐oxoheptanoic acid, C11H16­Cl2O3, (2), and (1′S,3R)‐3‐(2′,2′‐di­bromo‐1′‐methyl­cyclo­propyl)‐6‐oxoheptanoic acid, C11H16Br2O3, (3), are isostructural. Both present two stereogenic centers at C1′ and C3. The absolute configuration was determined by X‐ray methods. The cyclo­propyl rings are unsymmetrical, the shortest bond being distal with respect to the alkyl‐substituted C atom.  相似文献   

12.
The photooxygenation of (4R,4aS,7R)-4,4a,5,6,7,8-hexahydro-4,7-dimethyl-3H-2-benzopyran ( 16 ) was performed in (i) MeOH, (ii) acetaldehyde, and (iii) acetone at ?78°. The products obtained respectively were (i) (2R)-2-[(1S,4R)-4-methyl-2-oxocyclohexyl]propyl formate ( 17 ; 72% yield), (ii) 17 (54.5%), (1R,4R,4aS,7R)-3,4,4a,5,6,7-hexahydro-4,7-dimethyl-1H-2-benzopyran-2-yl hydroperoxide ( 19 ; 16.7%), a 12:1 ratio of (3R,4aR,7R,7aS,10R,11aR)-7,7a,8,9,10,11-hexahydro-3,7,10-trimethyl-6H-[2]benzopyrano[1,8a-e]-1,2,4-trioxane ( 20 ) and its C(3)-epimer 21 (17%), together with evidence for the 1,2-dioxetane ( 22 ) originating from the addition of dioxygen to the re-re face of the double bond of 16 , and iii) unidentified products and traces of 22 . Addition of trimethylsilyl trifluoromethanesulfonate (Me3SiOTf) to the acetone solution of 16 after photooxygenation afforded (4aR,7R,7aS,10R,11aR)-7,7a,8,9,10,11-hexahydro-3,3,7,10-tetramethyl-6H-[2]benzopyrano[1,8a-e]-1,2,4,-trioxane ( 23 , 40%). The photooxygenation of 16 in CH2Cl2 at ?78° followed by addition of acetone and Me3SiOTf afforded 17 (11%), 23 (59%), and (4aR,7R,7aS,10R,11aR)-7,7a,8,9,10,11-hexahydro-3,3,7,10-tetramethyl-6H-[2]benzopyrano[8a,1-e]-1,2,4-trioxane ( 24 ; 5%. Repetition of the last experiment, but replacing acetone by cyclopentanone, gave 17 (16%), (4′aR,7′R,7′aS,10′R,11′aR)-7′,7′a,8′,9′,10′,11′-hexahydro-7′,10′-dimethylspiro[cyclopentane-1,3′-6′H-[2]benzopyrano[1,8a-e]-1,2,4-trixane] ( 25 ; 61%), and (4′aR,7′R,7′aS,10′R,11′aR)-7′,7′a,8′,9′,10′,11′-hexahydro-7′,10′-dimethylspiro[cyclopentane-1,3′-6′H-[2]benzopyrano[8a,1-e]-1,2,4-trixane] ( 26 , 4%). The X-ray analysis of 23 was performed, which together with the NMR data, established the structure of the trioxanes 20, 21, 24, 25 , and 26 . Mechanistic and synthesis aspects of these reactions were discussed in relation to the construction of the 1,2,4-trioxane ring in arteannuin and similar molecules.  相似文献   

13.
The syntheses of two 2′,3′‐fused bicyclic nucleoside analogues, i.e., 1‐[(4aR,5R,7R,7aS)‐hexahydro‐5‐(hydroxymethyl)‐4,4‐dioxidofuro[3,4‐b][1,4]oxathiin‐7‐yl]pyrimidine‐2,4(1H,3H)‐dione ( 1a ) and 1‐[(4aS,5R,7R,7aS)‐hexahydro‐7‐(hydroxymethyl)‐1,1‐dioxido‐2H‐furo[3,4‐b][1,4]thiazin‐5‐yl]pyrimidine‐ 2,4(1H,3H)‐dione ( 1b ), are described, the key step being an intramolecular hetero‐Michael addition. Their structures and conformations, previously solved by X‐ray crystallography, were analyzed in more detail, using 1D‐ and 2D‐NMR as well as HR‐MS analyses.  相似文献   

14.
The title compounds, (2R,2′′S,3b′S,4a′R,7b′S,8a′R)‐per­hydro­di­spiro­[furan‐2,3′‐di­cyclo­penta­[a,e]­pentalene‐7′,2′′‐furan]‐5,5′′‐dione, C20H26O4, and (3aR,3bR,4aR,4bS,5aS,8aR,8bR,9aR,9bS,10aS)‐per­hydro­dipentaleno­[2,1‐a:2′,1′‐e]­pentalene‐1,6‐dione, C20H26O2, are intermediates identified during the synthesis of dodecahedrane. Crystallographic studies have established the ring‐junction stereochemistry for these important intermediates. All the ring junctions are cis‐fused, and the molecular packing is stabilized by van der Waals interactions.  相似文献   

15.
Due to using (R)‐ or (S)‐α‐methylbenzylamine as a chiral auxiliary, and low‐temperature regime for reduction of the intermediate ferrocenyl‐mono‐ or 1,1′‐bis‐ketimines, the corresponding secondary mono‐ or 1,1′‐bis‐amines were prepared with high diastereoselectivity. Removal of the α‐methylbenzyl group afforded the optically active primary mono‐ and bis‐ferrocenylethylamines in high yields. The absolute configuration of (R,R)‐ 3a and (S,S)‐ 3b was determined by X‐ray single crystal diffraction.  相似文献   

16.
From the twigs of Amoora stellato‐squamosa, five new neoclerodane diterpenes have been isolated and characterized, methyl (13E)‐2‐oxoneocleroda‐3,13‐dien‐15‐oate (=methyl (2E)‐3‐methyl‐5‐[(1S,2R,4aR,8aR)‐1,2,3,4,4a,7,8,8a‐octahydro‐1,2,4a,5‐tetramethyl‐7‐oxo‐naphthalen‐1‐yl]pent‐2‐enoate; 1 ), (13E)‐2‐oxoneocleroda‐3,13‐dien‐15‐ol (=(4aR,7R,8S,8aR)‐1,2,4a,5,6,7,8,8a‐octahydro‐8‐[(E)‐5‐hydroxy‐3‐methylpent‐3‐enyl]‐4,4a,7,8‐tetramethylnaphthalen‐2(1H)‐one; 2 ), (3α,4β,13E)‐neoclerod‐13‐ene‐3,4,15‐triol (=(1R,2R,4aR, 5S,6R,8aR)‐decahydro‐5‐[(E)‐5‐hydroxy‐3‐methylpent‐3‐enyl]‐1,5,6,8a‐tetramethylnaphthalene‐1,2‐diol; 3 ), (3α,4β,13E)‐4‐ethoxyneoclerod‐13‐ene‐3,15‐diol (=(1R,2R,4aR,5S,6R,8aR)‐1‐ethoxydecahydro‐5‐[(E)‐5‐hydroxy‐3‐methylpent‐3‐enyl]‐1,5,6,8a‐tetramethylnaphthalen‐2‐ol; 4 ), and (3α,4β,14RS)‐neoclerod‐13(16)‐ ene‐3,4,14,15‐tetrol (=(1R,2R,4aR,5S,6R,8aR)‐decahydro‐5‐[3‐(1,2‐dihydroxyethyl)but‐3‐enyl]‐1,5,6,8a‐tetramethylnaphthalene‐1,2‐diol; 5 ), together with two known compounds, (13E)‐neocleroda‐3,13‐diene‐15,18‐diol ( 6 ) and (13S)‐2‐oxoneocleroda‐3,14‐dien‐13‐ol ( 7 ).  相似文献   

17.
Three new compounds, (5β,9β)‐guaia‐6,10(14)‐dien‐9‐ol (=rel‐(1R,3aS,5R,8aR)‐1,2,3,3a,4,5,6,8a‐octahydro‐1‐methyl‐4‐methylene‐7‐(1‐methylethyl)azulen‐5‐ol; 1 ), 6‐acetyl‐8‐methoxy‐2,3‐dimethylchromen‐4‐one (=6‐acetyl‐8‐methoxy‐2,3‐dimethyl‐4H‐1‐benzopyran‐4‐one; 2 ), and (2S)‐3′‐hydroxy‐5′,7‐dimethoxyflavanone (=(2S)‐2,3‐dihydro‐2‐(3‐hydroxy‐5‐methoxyphenyl)‐7‐methoxy‐4H‐1‐benzopyran‐4‐one; 3 ) were isolated from the roots and rhizomes of Ligularia macrophylla, together with seven known compounds. Their structures and configurations were elucidated by spectroscopic methods, including 2D‐NMR techniques.  相似文献   

18.
The structure of naturally‐occurring cinerin C [systematic name: (7S,8R,3′R,4′S,5′R)‐Δ8′‐4′‐hydroxy‐5,5′,3′‐trimethoxy‐3,4‐methylenedioxy‐2′,3′,4′,5′‐tetrahydro‐2′‐oxo‐7.3′,8.5′‐neolignan], isolated from the ethanol extract of leaves of Pleurothyrium cinereum (Lauraceae), has previously been established by NMR and HRMS spectroscopy, and its absolute configuration established by circular dichroism measurements. For the first time, its crystal strucure has now been established by single‐crystal X‐ray analysis, as the monohydrate, C22H26O7·H2O. The bicyclooctane moiety comprises fused cyclopentane and cyclohexenone rings which are almost coplanar. An intermolecular O—H...O hydrogen bond links the 4′‐OH and 5′‐OCH3 groups along the c axis.  相似文献   

19.
A new, non‐iterative method for the asymmetric synthesis of long‐chain and polycyclic polypropanoate fragments starting from 2,2′‐ethylidenebis[3,5‐dimethylfuran] ( 2 ) has been developed. Diethyl (2E,5E)‐4‐oxohepta‐2,5‐dienoate ( 6 ) added to 2 to give a single meso‐adduct 7 containing nine stereogenic centers. Its desymmetrization was realized by hydroboration with (+)‐IpcBH2 (isopinocampheylborane), leading to diethyl (1S,2R,3S,4S,4aS,7R,8R,8aR,9aS,10R,10aR)‐1,3,4,7,8,8a,9,9a‐octahydro‐3‐hydroxy‐2,4,5,7,10‐pentamethyl‐9‐oxo‐2H,10H‐2,4a : 7,10a‐diepoxyanthracene‐1,8‐dicarboxylate ((+)‐ 8 ; 78% e.e.). Alternatively, 7 was converted to meso‐(1R,2R,4R,4aR,5S,7S,8S,8aR,9aS,10s,10aS)‐1,8‐bis(acetoxymethyl)‐1,8,8a,9a‐tetrahydro‐2,4,5,7,10‐pentamethyl‐2H‐10H‐2,4a : 7,10a‐diepoxyanthracene‐3,6,9(4H,5H,7H)‐trione ( 32 ) that was reduced enantioselectively by BH3 catalyzed by methyloxazaborolidine 19 derived from L ‐diphenylprolinol giving (1S,2S,4S,4aS,5S,6R,7R,8R,8aS,9aR,10R,10aS)‐1,8‐bis(acetoxymethyl)‐1,8,8a,9a‐tetrahydro‐6‐hydroxy‐2,4,5,7,10‐pentamethyl‐2H,10H‐2,4a : 7,10a‐diepoxyanthracene‐3,9(4H,7H)‐dione ((−)‐ 33 ; 90% e.e.). Chemistry was explored to carry out chemoselective 7‐oxabicyclo[2.2.1]heptanone oxa‐ring openings and intra‐ring C−C bond cleavage. Polycyclic polypropanoates such as (1R,2S,3R,4R,4aR,5S,6R,7S,8R,9R,10R,11S,12aR)‐1‐(ethoxycarbonyl)‐1,3,4,7,8,9,10,11,12,12a‐decahydro‐3,11‐dihydroxy‐2,4,5,7,9‐pentamethyl‐12‐oxo‐2H,5H‐2,4a : 6,9 : 6,11‐triepoxybenzocyclodecene‐10,8‐carbolactone ( 51 ), (1S,2R,3R,4R,4aS,5S,7S,8R,9R,10R,12S,12aS)‐1,10‐bis(acetoxymethyl)tetradecahydro‐8‐(methoxymethoxy)‐2,4,5,7,9‐pentamethyl‐3,9‐bis{[2‐(trimethylsilyl)ethoxy]methoxy}‐6,11‐epoxycyclodecene‐4a,6,11,12‐tetrol ((+)‐ 83 ), and (1R,2R,3R,4aR,4bR,5S,6R, 7R,8R,8aS,9S,10aR)‐3,5‐bis(acetoxymethyl)‐4a,8a‐dihydroxy‐1‐(methoxymethoxy)‐2,6,8,9,10a‐pentamethyl‐2,7‐bis{[2‐(trimethylsilyl)ethoxy]methoxy}dodecahydrophenanthrene‐4,10‐dione ( 85 ) were obtained in few synthetic steps.  相似文献   

20.
The title compounds, (3R,5S,5′R,8R,9S,10S,13S,14S)‐10,13‐dimethyl‐5′‐(2‐methylpropyl)tetradecahydro‐6′H‐spiro[cyclopenta[a]phenanthrene‐3,2′‐[1,4]oxazinane]‐6′,17(2H)‐dione, C26H41NO3, (I), and methyl (2R)‐2‐[(3R,5S,8R,9S,10S,13S,14S)‐10,13‐dimethyl‐2′,17‐dioxohexadecahydro‐3′H‐spiro[cyclopenta[a]phenanthrene‐3,5′‐[1,3]oxazolidin‐3′‐yl]]‐4‐methylpentanoate, C28H43NO5, (II), possess the typical steroid shape (AD rings), but they differ in their extra E ring. The azalactone E ring in (I) shows a half‐chair conformation, while the carbamate E ring of (II) is planar. The orientation of the E‐ring substituent is clearly established and allows a rationalization of the biological results obtained with such androsterone derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号