首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An expeditious, highly efficient approach to 11‐cis‐retinoids was achieved by semihydrogenation of a readily available 11‐yne precursor through a hydrosilylation–protodesilylation protocol. The complete chemo‐, regio‐, and syn‐stereoselectivity of the method also allowed direct access to 11‐ and 12‐monodeutero‐, and 11,12‐dideutero‐11‐cis‐retinoids. The analogous trans series was not accessible by this route, and was synthesized by means of Hiyama coupling.  相似文献   

2.
A highly efficient and practical synthesis for strained special scaffold of chiral endo‐biarylnorbornane starting from available norbornadione was achieved with direct stereoselective dehydroxylation of tertiary alcohol as the key step, and the structure was illustrated by X‐ray structural analysis.  相似文献   

3.
The intramolecular bromo‐amidation and the dibromination‐cyclisation of the N‐acylcyclohex‐3‐en‐1‐amines 4, 8, 9, 11, 13, 14 , and 16 was studied in view of the synthesis of bicyclic amines that are of interest as building blocks and potential glycosidase inhibitors. The trifluoroacetamides 4, 9 , and 14 reacted with N‐bromosuccinimide (NBS) in AcOH to give dihydro‐1,3‐oxazines in good yields. The stereoselectivity of the dibromination of the alkenes 8 and 9 depends on the nature of the protecting group, the reagent, and the reaction conditions. Br2 in CH2Cl2 transformed the alkenes 8 and 9 predominantly into diaxial trans,trans‐dibromides. Bromination of 9 with PhMe3NBr3 or with Br2 in the presence of Et4NBr gave predominantly the diequatorial trans,cis‐ 27 besides some trans,trans‐ 28 . A similar bromination of the C(5)‐substituted N‐acyl‐4‐aminocyclohexenes 11, 13, 14 , and 16 with PhMe3NBr3 was accompanied by intramolecular side reactions that were suppressed by the addition of excess Et4NBr. Under these conditions, 11 gave diastereoselectively trans‐dibromides, while its reaction with Br2 gave trans‐dibromides along with the dihydrooxazinone 31 . Also the carbamate 13 reacted with PhMe3NBr3/Et4NBr selectively to the trans‐dibromide 32 and with Br2 to the trans‐dibromides 32 and 33 , the dihydrooxazinone 34 , and the bicyclic ether 35 . Similarly, the trifluoroacetamide 14 provided the dibromide 36 (89%), while its reaction with Br2 led to the dihydrooxazine 22 , and the dibromides 36 and 37 . The N‐benzyl‐N‐Boc derivative 16 did not yield any dibromide; it reacted with PhMe3NBr3/Et4NBr to the dihydrooxazinone 38 , and with Br2 to the oxazinone 38 and the bicyclic ether 39 . The high stereoselectivity of the bromination with PhMe3NBr3/Et4NBr suggests an anchimeric assistance of the NHR substituent. Deprotection, cyclisation, and carbamoylation transformed the dibromides 27, 29 , and 32 into the 7‐azanorbornanes 42, 49 , and 53 . The diols 45 and 57 were obtained from 42 and 53 via HBr elimination and stereoselective dihydroxylation; they proved weak inhibitors of several glycosidases. In no case could the formation of a bicyclic azetidine (6‐azabicyclo[3.1.1]heptane) from the dibromides 26 and 30 be observed.  相似文献   

4.
5.
The [4+2] cycloaddition of 3‐alkoxyfurans with N‐substituted maleimides provides the first general route for preparing endo‐cantharimides. Unlike the corresponding reaction with 3H furans, the reaction can tolerate a broad range of 2‐substitued furans including alkyl, aromatic, and heteroaromatic groups. The cycloaddition products were converted into a range of cantharimide products with promising lead‐like properties for medicinal chemistry programs. Furthermore, the electron‐rich furans are shown to react with a variety of alternative dienophiles to generate 7‐oxabicyclo[2.2.1]heptane derivatives under mild conditions. DFT calculations have been performed to rationalize the activation effect of the 3‐alkoxy group on a furan Diels–Alder reaction.  相似文献   

6.
The stannides ErAgSn and TmAgSn have been investigated under high‐temperature (HT) and high‐pressure (HP) conditions in order to investigate their structural chemistry. ErAgSn and TmAgSn are dimorphic: normal‐pressure (NP) ErAgSn and HT‐TmAgSn crystallize into the NdPtSb type structure, P63mc, a = 466.3(1), c = 729.0(2) pm for NP‐ErAgSn and a = 465.4(1), c = 726.6(2) pm for HT‐TmAgSn. NP‐ErAgSn was obtained via arc‐melting of the elements and subsequent annealing at 970 K, while HT‐TmAgSn crystallized directly from the melt by rapidly quenching the arc‐melted sample. HT‐TmAgSn transforms to the ZrNiAl type low‐temperature modification upon annealing at 970 K. The high‐pressure (HP) modification of ErAgSn was synthesized under multianvil high‐pressure (11.5 GPa) high‐temperature (1420 K) conditions from NP‐ErAgSn: ZrNiAl type, , a = 728.7(2), c = 445.6(1) pm. The silver and tin atoms in NP‐ErAgSn and HT‐TmAgSn build up two‐dimensional, puckered [Ag3Sn3] networks (277 pm intralayer Ag–Sn distance in NP‐ErAgSn) that are charge‐balanced and separated by the erbium and thulium atoms. The fourth neighbor in the adjacent layer has a longer Ag–Sn distance of 298 pm. The [AgSn] network in HP‐ErAgSn is three‐dimensional. Each silver atom has four tin neighbors (281–285 pm Ag–Sn). The [AgSn] network leaves distorted hexagonal channels, which are filled with the erbium atoms. The crystal chemistry of the three phases is discussed.  相似文献   

7.
The ignition behavior of methyl furan (2‐MF) and methyl tetrahydrofuran (2‐MTHF) is investigated using the shock tube technique. Experiments are carried out using homogeneous gaseous mixtures of fuel, oxygen, and argon with equivalence ratios, ?, of 0.5, 1.0, and 2.0 at average pressures of 3 and 12 atm over a temperature range of 1060–1300 K. In addition to ignition delay time measurements, fuel concentration time histories during ignition and pyrolysis of 2‐MTHF are obtained by means of laser absorption spectroscopy using a He–Ne laser at a fixed wavelength of 3.39 µm. With respect to ignition delay times, it is observed that under similar conditions of equivalence ratio and argon/oxygen ratio (D), 2‐MTHF has longer ignition delay times than 2‐MF at 3 atm. In addition, 2‐MTHF has longer ignition delay times than 2‐MF at higher temperatures for the case of 12 atm and under the same conditions of ? and D. The higher reactivity of 2‐MF, as indicated by shorter ignition delay times, is attributed to differences in chemical structure, whereby weaker C–H bond sites are more readily susceptible to radical attack than in 2‐MTHF. It is observed that ignition delay times of 2‐MTHF decrease with increasing equivalence ratio at 12 atm for fixed argon/oxygen ratio. Ignition delay times are compared with model predictions using recent chemical kinetic models of both fuels, showing that both models generally predict shorter ignition delay times than measured. The relatively higher absorption cross section of 2‐MTHF at 3.39 µm allows for its concentration time histories to be determined and compared to model predictions. In line with the observed discrepancy in ignition predictions, predicted 2‐MTHF concentration profiles are such that the fuel is shown to be more rapidly consumed than observed in the experiments. The study advances understanding of the combustion chemistry of these cyclic ethers that are potential alternative fuels.  相似文献   

8.
Highly efficient, one‐step synthesis of sulfur‐containing heteroacenes was achieved through palladium‐catalyzed C?S cross‐coupling of bis‐alkynes with thioacetate as hydrogen sulfide surrogate. Heteroacenes consisting of three, five, and seven fused aromatic rings were obtained in a single catalytic step by four‐, six‐, and eightfold C?S bond formation.  相似文献   

9.
A series of novel benzo[c]phenanthridine derivatives 2a , 2b , 2c , 2d , 2e , 2f , 2g , 2h , 2i , 2j , 2k , 2l , 2m and 3a , 3b , 3c , 3d , 3e , 3f bearing an alkylamino side chain at their 6‐position were synthesized. All of the target compounds were confirmed by 1H NMR, 13C NMR, and HRMS, and some of them were also characterized by IR and 19F NMR. The preliminary bioassays showed that the target compounds displayed fungicidal activities; for example, compound 2l showed 60.0% and 70.0% inhibitive activity against Alternaria solani and Cercospora arachidicola at 50 mg/L, respectively, and some compounds also displayed plant growth‐regulating activities.  相似文献   

10.
Methods have been developed for the synthesis of 7α‐amino‐ and 7α‐(aminomethyl)‐N‐cyclopropylmethyl‐6,14‐endo‐ethanotetrahydronororipavines and their cinnamoyl derivatives (Schemes 1 and 3). In displacement binding assays, the cinnamoyl derivatives 4c and 5c had high affinity for opioid receptors, but no particular selectivity for any receptor type or differences in affinity between 4c and 5c (Table 1). In tissue assays for opioid receptor function, in which both 4c and 5c were potent antagonists, the aminomethyl derivative 5c was 20‐ to 70‐fold more potent than the amino derivative 4c (Table 2). These data are in keeping with previously reported in vivo data and confirm the major effect of the methylene spacer in 5c .  相似文献   

11.
《Electroanalysis》2004,16(6):421-433
High‐temperature electrochemistry remains a relatively unexplored field of research, although in recent years significant developments have been made. This report details the main experimental methods and approaches to heating an electrochemical system under both isothermal and non‐isothermal conditions and gives an insight into the experimental and electroanalytical results obtainable under such conditions. It has been shown that the promotion of mass transport at high‐temperatures, through diffusion or convection, often results in increased current signals. This increase benefits electroanalytical measurements by lowering detection limits. High temperatures also usefully enhance the sensitivity of systems with sluggish kinetics.  相似文献   

12.
A sequential two‐step method for the synthesis of hetero‐arylated triarylmethanes through a Ag‐catalyzed sequential double cyclization–nucleophilic addition cascade is described. This methodology basically involves an initial 5‐endo‐dig cyclization of o‐alkynyl anilines to provide 2‐substituted indole derivatives, which then react with 2‐(2‐enynyl)‐pyridines to afford indolizine‐containing unsymmetrical triarylmethanes through another 5‐endo‐dig cyclization.  相似文献   

13.
14.
15.
16.
The reaction of the ‘oximato’‐ligand precursor A (Fig. 1) and metal salts with KCN gave two mononuclear complexes [ML(CN)(H2O)n](ClO4) ( 1 and 2 ; L={N‐(hydroxy‐κO)‐α‐oxo‐N′‐[(pyridin‐2‐yl‐κN)methyl[1,1′‐biphenyl]‐4‐ethanimidamidato‐κN′}; M=CoII ( 1 ), CuII ( 2 ); n=2 for CoII, n=0 for CuII; Figs. 2 and 3). The new cyano‐bridged pentanuclear ‘oximato’ complexes [{ML(H2O)n(NC)}4M1(H2O)x](ClO4)2 ( 3 – 6 ) and trinuclear complexes [{ML(H2O)n(NC)}2M1L](ClO4) ( 7 – 10 ) ([M1=MnII, CuII; x=2 for MnII, x=0 for CuII] were synthesized from mononuclear complexes and characterized by elemental analyses, magnetic susceptibility, molar conductance, and IR and thermal analysis. The four [ML(CN)(H2O)n]+ moieties are connected by a metal(II) ion in the pentanuclear complexe 3 – 6 , each one involving four cyano bridging ligands (Fig. 4). The central metal ion displays a square‐planar or octahedral geometry, with the cyano bridging ligands forming the equatorial plane. The axial positions are occupied by two aqua ligands in the case of the central Mn‐atom. The two [ML(CN)(H2O)n]+ moieties and an ‘oximato’ ligand are connected by a metal(II) ion in the trinuclear complexes 7 – 10 , each one involving two cyano bridging ligands (Fig. 5). The central metal ions display a distorted square‐pyramidal geometry, with two cyano bridging ligands and the donor atoms of the tridentate ‘oximato’ ligand. Moreover catalytic activities of the complexes for the disproportionation of hydrogen peroxide (H2O2) were also investigated in the presence of 1H‐imidazole. The synthesized homopolynuclear CuII complexes 6 and 10 displayed eficiency in disproportion reactions of H2O2 producing H2O and dioxygen thus showing catalase‐like activity.  相似文献   

17.
Microreactor technology and continuous flow processing in general are key features in making organic synthesis both more economical and environmentally friendly. When preformed under a high‐temperature/pressure process intensification regime many transformations originally not considered suitable for flow synthesis owing to long reaction times can be converted into high‐speed flow chemistry protocols that can operate at production‐scale quantities. This Focus Review summarizes the state of the art in high‐temperature/pressure microreactor technology and provides a survey of successful applications of this technique from the recent synthetic organic chemistry literature.  相似文献   

18.
The environmentally friendly high‐energy density salt (TRTR)(PA) (TRTR = 3, 4′‐bis‐1, 2,4‐1H‐triazole, PA = 2, 4,6‐trinitrophenol, picric acid) was synthesized and characterized. The X‐ray single crystal diffraction results illustrate that the structure of title salt belongs to the monoclinic system, space group P21/c. Many parallel relationships exist in the molecule, as well as a strong intramolecular π–π stacking interaction. The DSC result shows only one exothermal decomposition step at 229.1 °C. The TG‐DTG curve demonstrates a 75.9 % mass loss from 180 °C to 300 °C at a rate of 3.01 % · K–1. Experimental data show that the combustion heat approximately equals to TNT (–15.22 MJ · kg–1) and the enthalpy of formation is +332.2 kJ · mol–1. Non–isothermal kinetic and thermodynamic parameters were obtained by two methods (Kissinger and Ozawa). Detonation pressure and velocity were calculated to be 23.4 GPa and 7.32 km · s–1, respectively. Additionally, the sensitivities towards impact and friction were assessed with relevant standard methods.  相似文献   

19.
20.
From high‐precision Brillouin spectroscopy measurements, six elastic constants (C11, C33, C44, C66, C12, and C14) of a flux‐grown GeO2 single crystal with the α‐quartz‐like structure are obtained in the 298–1273 K temperature range. High‐temperature powder X‐ray diffraction data is collected to determine the temperature dependence of the lattice parameters and the volume thermal expansion coefficients. The temperature dependence of the mass density, ρ, is evaluated and used to estimate the thermal dependence of its refractive indices (ordinary and extraordinary), according to the Lorentz–Lorenz equation. The extraction of the ambient piezoelectric stress contribution, e11, from the C11C11 difference gives, for the piezoelectric strain coefficient d11, a value of 5.7(2) pC N?1, which is more than twice that of α‐quartz. As the quartz structure of α‐GeO2 remains stable until melting, piezoelectric activity is observed until 1273 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号