首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oligosaccharides and glycoconjugates play an important role in biological processes. The use of these complex polymers as biocompatible materials for medicinal applications as well as therapeutic agents for the treatment of several diseases has attracted considerable interest. However, these investigations require large and pure amounts of glycostructures. Glucosamine is one of the major building blocks of these highly important glycoconjugates. Recently, considerable synthetic efforts have been devoted to improving stereoselective glycosylation. In this Focus review, the role of the amine protecting group in the outcome of the glucosamine glycosylation reaction is highlighted.  相似文献   

2.
《化学:亚洲杂志》2017,12(3):278-282
A combined kinetic and theoretical study was conducted in order to clarify the details on the reaction mechanism for Ni0/It Bu‐catalyzed intramolecular alkene hydroacylation. The results confirm the hypothesis that this intramolecular hydroacylation proceeds through an oxanickelacycle key intermediate.  相似文献   

3.
Density functional theory (DFT) and ab initio methods were used to study gas‐phase pyrolytic reaction mechanisms of iV‐ethyl, N‐isopropyl and N‐t‐butyl substituted 2‐aminopyrazine at B3LYP/6–31G* and MP2/6–31G*, respectively. Single‐point energies of all optimized molecular geometries were calculated at B3LYP/6–311 + G(2d,p) level. Results show that the pyrolytic reactions were carried out through a unimolecular first‐order mechanism which were caused by the migration of atom H(17) via a six‐member ring transition state. The activation energies which were verified by vibrational analysis and correlated with zero‐point energies along the reaction channel at B3LYP/6–311 + G(2d,p) level were 252.02 kJ. mo?1 (N‐ethyl substituted), 235.92 kJ‐mol?1 (N‐t‐isopropyl substituted) and 234.27 kJ‐mol?1 (N‐t‐butyl substituted), respectively. The results were in good agreement with available experimental data.  相似文献   

4.
Polymer‐supported 2‐azidoethyl sulfonate and 3‐azidopropyl sulfonate reagents have been developed and applied to the solid‐phase organic synthesis of 1‐vinyl‐ and 1‐allyl‐1,2,3‐triazoles, respectively, by CuI‐mediated azide‐alkyne cycloadditions and subsequent cleavage from the polymer support through elimination reaction promoted by DBU. The advantages of this new synthetic method include simple operation and high yield of the products, as well as good stability of the reagents.  相似文献   

5.
The ultraviolet (UV) direct photolysis of N‐nitrosodimethylamine (NDMA) in aqueous solutions at pH 3 and 7 leads to dimethylamine, and nitrite and nitrate ions as the major degradation products. In addition, small amounts of formaldehyde, formic acid, and methylamine are formed. When the initial concentration of NDMA was 1 mM , only a 13% decrease in the total organic carbon (TOC) was measured at pH 7, whereas no significant change in the TOC was observed at pH 3. In the concentration range 0.01–1 mM NDMA, zero‐order kinetics is obeyed, whereas first‐order kinetics is followed at concentrations below 0.01 mM . The photolysis occurs much faster at pH 3 than at pH 7, which is explained by the difference in the quantum yields of the process at these two pH values. UV Direct photolysis is an efficient process for the removal of NDMA from contaminated waters, and electrical energy per order (EEO) values as low as 0.3–0.5 kWh/order/m3 were calculated for treatment of low concentrations of NDMA (0.001 mM ).  相似文献   

6.
Rates of thermal decomposition of title compounds have been measured using a static reaction system. They undergo a unimolecular first‐order elimination to give arylnitrile and the corresponding substituted amides. The decomposition parallels that of N‐arylidenamino cyclic amide. The relative elimination rates at 600 K were calculated. The kinetic data reveal that the electronic effects of substituents, such as methyl, phenyl, benzyl, and allyl groups, are associated with the opposing directions in which the lone pair of electrons on the nitrogen atom of the arylidene moiety is being delocalized. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 39: 59–66, 2007  相似文献   

7.
The kinetics of the aqueous cleavage of N‐ethoxycarbonylphthalimide (NCPH) in CH3NHOH buffers of different pH reveals that the cleavage follows the general irreversible consecutive reaction path NCPH ENMBC A B , where ENMBC, A , and B represent ethyl N‐[o‐(N‐methyl‐N‐hydroxycarbamoyl)benzoyl]carbamate, N‐hydroxyl group cyclized product of ENMBC, and o ‐(N‐methyl‐N‐hydroxycarbamoyl)benzoic acid, respectively. The rate constant k1 obs at a constant pH, obeys the relationship k1 obs = kw + knapp [Am]T + kb[Am]T2, where [Am]T is the total concentration of CH3NHOH buffer and kw is first‐order rate constant for pH‐independent hydrolysis of NCPH. Buffer‐dependent rate constant kb shows the presence of both general base and general acid catalysis. Both the rate constants k2 obs and k3 obs are independent of [Am]T (within the [Am]T range of present study) at a constant pH and increase linearly with the increase in aOH with definite intercepts. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 34: 95–103, 2002  相似文献   

8.
Degradation via hydrolysis is among the main transformation pathways and particularly for N‐methylcarbamates. Carbamate pesticide hydrolysis is known to proceed through alkaline catalysis, with reaction of the hydroxide ion with the carbonyl function or with abstraction of hydrogen in the α position with respect to the carbonyl. This reaction leads to the formation of methylamine and corresponding phenol. In this respect, the reaction kinetics of 4‐bromo‐3,5‐dimethylphenyl N‐methylcarbamate (BDMC) hydrolysis have been investigated in alkaline solution using a spectrophotometric technique and reversed phase liquid chromatography. The kinetic constants were determined following a proposed pseudo–first‐order kinetic model. The positive activation entropy ΔS = +35.73 J mol−1 K−1 and the absence of general base catalysis indicated an unimolecular elimination conjugate base (E1cB) hydrolytic mechanism involving the formation of methyl isocyanate. This result was confirmed by the fact that BDMC fits well into brönsted and Hammett lines, obtained for a series of substituted N‐methylcarbamate whose decomposition in aqueous media was established to follow an E1cB mechanism.  相似文献   

9.
The acenaphthene oxidation with molecular oxygen in the presence of N‐hydroxyphthalimide (NHPI) has been investigated. It is shown that the main oxidation product is acenaphthene hydroperoxide. The phthalimide‐N‐oxyl (PINO) radical has been generated in situ from its hydroxyimide parent, NHPI, by oxidation with iodobenzenediacetate. The rate constant of H‐abstraction (kH) from acenaphthene by PINO has been determined spectroscopically in acetonitrile. The kinetic isotope effect and the activation parameters have also been measured. On the basis of the results of our studies and available published literature data, a plausible mechanism for the oxidation process of acenaphthene with dioxygen catalyzed by NHPI was discussed.  相似文献   

10.
The dynamic kinetic resolution of 6‐hydroxypyranones with enals or alkynals through an asymmetric redox esterification is catalyzed by a chiral N‐heterocyclic carbene. The resulting esters are obtained in good to high yields and with high levels of enantio‐ and diastereocontrol. The reaction products are further derivatized to obtain functionalized sugar derivatives and natural products.  相似文献   

11.
The kinetics of oxidation of five dipeptides (DPP) viz., glycylglycine (Gly-Gly), L-alanyl-L-alanine (Ala-Ala), L-valyl-L-valine (Val-Val), L-leucyl-L-leucine (Leu-Leu) and phenylglycyl-phenylglycine (Phg-Phg) by sodium N-chloro-p-toluenesulfonamide or chloramine-T (CAT) in NaOH medium was studied at 308 K. The reactions follow identical kinetics for all the dipeptides, being first-order dependence each on [CAT]o, [DPP]o and fractional-order on [OH]. Addition of p-toluenesulfonamide or halide ions (Cl or Br) has no significant effect on the rate of reaction. The reaction rate was found to increase with increase in ionic strength of the medium. The solvent isotope effect was studied using D2O. The activation parameters for the reaction were computed from Arrhenius plots. Equilibrium and decomposition constants were evaluated. The oxidation products of the dipeptides were identified as their corresponding aldehydes. An isokinetic relationship was observed with β=352 K, indicating that enthalpy factors control the reaction rate. CH3C6H4SO2NCl of the oxidant has been postulated as the reactive oxidizing species. Under comparable experimental conditions, the rate of oxidation of the dipeptides increases in the order: Phg-Phg>Ala-Ala>Val-Val>Leu-Leu>Gly-Gly. The kinetics of oxidation of the dipeptides have also been compared with those of their corresponding monomer amino acids. The observed results have been explained by a plausible mechanism and the related rate law has been deduced.  相似文献   

12.
A potassium salt of N‐chloroacetyl‐11‐aminoundecanoate was thermally polymerized to obtain the corresponding poly(glycolic acid‐alt‐11‐aminoundecanoic acid). A kinetic study was then performed that was based on isothermal and nonisothermal polymerizations performed in a differential scanning calorimeter. The complete kinetic triplet was determined (the activation energy, pre‐exponential factor, and integral function of the degree of conversion). A kinetic analysis was performed with an integral isoconversional procedure (free model), and the kinetic model was determined both with the Coats–Redfern method (the obtained isoconversional value being accepted as the effective activation energy) and through the compensation effect. The polymerization followed a three‐dimensional growth‐of‐nuclei (Avrami) kinetic mechanism. Isothermal polymerization was simulated with nonisothermal data. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1166–1176, 2005  相似文献   

13.
14.
N‐Bromophthalimide (NBP)‐triggered bromination of aromatic compounds has been studied in the presence of aqueous acetic acid. Reaction Kinetics indicated first order in [NBP] and zero order in [Anisole]. The reactions afforded very good yields of corresponding bromo derivatives under kinetic conditions. The mechanism of the reaction is explained through the formation of acetyl hypobromite due to the interaction of NBP and acetic acid, which in turn reacts with anisole to afford a bromo derivative of anisole.  相似文献   

15.
A kinetic study of oxidation of 2‐phenylethylamine (PEA), a bioactive compound, with potent oxidant, N‐bromosuccinimide (NBS) has been carried out in HCl and NaOH media at 313 K. The experimental rate laws obtained are: ‐d [NBS] /dt = k[NBS][PEA][H+] in hydrochloric acid medium and ‐d [NBS]/dt = k[NBS][PEA]x[OH?]y in alkaline medium where x and y are less than unity. Accelerating effect of [Cl?], and retardation of the added succinimide on the reaction rate have been observed in acid medium. Variation of ionic strength of the medium shows negligible effect on rate of reaction in both media. Decrease in dielectric permittivity of the medium decreased the rate in both media. The stoichiometry of the reaction was found to be 1:1 in acid medium and 1:2 in the case of alkaline medium. The oxidation products of PEA were identified as the corresponding aldehyde and nitrile in acid and alkaline medium, respectively. The reactions were studied at different temperatures and the activation parameters have been evaluated. The reaction constants involved in the proposed mechanisms were computed. The reaction was found to be faster in alkaline medium in comparison with the acid medium, which is attributed to the involvement of different oxidizing species. The proposed mechanisms and the derived rate laws are consistent with the observed experimental results.  相似文献   

16.
The stability and reactivity of mono‐ and multi‐protonatred N‐substituted isatin derivatives were studied at PBE0/aug‐cc‐pvtz//PBE0/6‐31+G** level of theory in triflic acid (TFSA) solution. Calculations showed that the monocationic intermediates are the principal reactive species in the reaction of hydroxyalkylation of isatin derivatives in TFSA media. Electron‐withdrawing substituents on the nitrogen atom increase the reactivity of isatin‐containing electrophiles towards aromatic hydrocarbons, in accordance with their expected electronic influence. Steric factors also play an important role in the reactivity of isatin‐containing electrophiles, especially in the second reaction step, due to their more sterically hindered reactive center.

  相似文献   


17.
Carbon dioxide (CO2, a common combustion pollutant) releasing continuously into the atmosphere is primarily responsible for the rising atmospheric temperature. Therefore, CO2 sequestration has been an indispensable area of research for the past several decades. On the other hand, the concept of aromaticity is often employed in designing chemical reactions and metal‐free frustrated Lewis pairs (FLPs) have proved ideal reagents to achieve CO2 reduction. However, considering FLP and aromaticity together is less developed in CO2 capture. Here we report theoretical investigations on the aromaticity‐promoted CO2 activation, involving heterocyclopentadiene‐bridged P/N‐FLPs. The calculations reveal that furan‐ and pyrrole‐bridged P/N‐FLPs can make CO2 capture both thermodynamically and kinetically favorable (with activation energies of 5.4–7.7 kcal mol?1) due to the aromatic stabilization of the transition states and products. Our findings could open an avenue to the design of novel FLPs for CO2 capture.  相似文献   

18.
DFT calculations at the BP86/TZ2P level were carried out to analyze quantitatively the metal–ligand bonding in transition‐metal complexes that contain imidazole (IMID), imidazol‐2‐ylidene (nNHC), or imidazol‐4‐ylidene (aNHC). The calculated complexes are [Cl4TM(L)] (TM=Ti, Zr, Hf), [(CO)5TM(L)] (TM=Cr, Mo, W), [(CO)4TM(L)] (TM=Fe, Ru, Os), and [ClTM(L)] (TM=Cu, Ag, Au). The relative energies of the free ligands increase in the order IMID<nNHC<aNHC. The energy levels of the carbon σ lone‐pair orbitals suggest the trend aNHC>nNHC>IMID for the donor strength, which is in agreement with the progression of the metal–ligand bond‐dissociation energy (BDE) for the three ligands for all metals of Groups 4, 6, 8, and 10. The electrostatic attraction can also be decisive in determining trends in ligand–metal bond strength. The comparison of the results of energy decomposition analysis for the Group 6 complexes [(CO)5TM(L)] (L=nNHC, aNHC, IMID) with phosphine complexes (L=PMe3 and PCl3) shows that the phosphine ligands are weaker σ donors and better π acceptors than the NHC tautomers nNHC, aNHC, and IMID.  相似文献   

19.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.  相似文献   

20.
The single‐electron transfer living radical polymerization (SET‐LRP) of N‐isopropylacrylamide (NIPAM) from silicon wafer modified with an initiator layer composed of 2‐bromopropionyl bromide (2‐BPB) fragments is described. The amount of Cu(0) generated in situ by the disproportination of Cu(I) to Cu(0) and Cu(II) in the presence of 2,2′‐bipyridine (2,2′‐bpy) ligand and N,N‐dimethylformamide (DMF) solvent at 90 °C is dependent on the ratio of [CuBr]/[CuBr2]. By proper selection of the [CuBr]/[CuBr2] ratio, well‐controlled SET‐LRP polymerization of NIPAM was observed such that the thickness of the layer consisting of chains grown from the surface increased linearly with the molecular weight of chains polymerized in solution in identical. In addition, the calculation of grafting parameters, including surface coverage, σ (mg/m2); grafting density, Σ (chain/nm2); and average distance between grafting sites, D (nm), from the number‐average molecular weight, M n (g/mol), and ellipsometric thickness, h (nm), values indicated the synthesis of densely grafted poly(NIPAM) films and allowed us to predict a “brush‐like” conformation. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号