首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The syntheses of N7‐glycosylated 9‐deazaguanine 1a as well as of its 9‐bromo and 9‐iodo derivatives 1b , c are described. The regioselective 9‐halogenation with N‐bromosuccinimide (NBS) and N‐iodosuccinimide (NIS) was accomplished at the protected nucleobase 4a (2‐{[(dimethylamino)methylidene]amino}‐3,5‐dihydro‐3‐[(pivaloyloxy)methyl]‐4H‐pyrrolo[3,2‐d]pyrimidin‐4‐one). Nucleobase‐anion glycosylation of 4a – c with 2‐deoxy‐3,5‐di‐O‐(p‐toluoyl)‐α‐D ‐erythro‐pentofuranosyl chloride ( 5 ) furnished the fully protected intermediates 6a – c (Scheme 2). They were deprotected with 0.01M NaOMe yielding the sugar‐deprotected derivatives 8a – c (Scheme 3). At higher concentrations (0.1M NaOMe), also the pivaloyloxymethyl group was removed to give 7a – c , while conc. aq. NH3 solution furnished the nucleosides 1a – c . In D2O, the sugar conformation was always biased towards S (67–61%).  相似文献   

2.
Iodination of N2‐isobutyryl‐5‐aza‐7‐deazaguanine ( 7 ) with N‐iodosuccinimide (NIS) gave 7‐iodo‐N2‐isobutyryl‐5‐aza‐7‐deazaguanine ( 8 ) in a regioselective reaction (Scheme 1). Nucleobase‐anion glycosylation of 8 with 2‐deoxy‐3,5‐di‐O‐toluoyl‐α‐D ‐ or α‐L ‐erythro‐pentofuranosyl chloride furnished anomeric mixtures of D ‐ and L ‐nucleosides. The anomeric D ‐nucleosides were separated by crystallization to give the α‐D ‐anomer and β‐D ‐anomer with excellent optical purity. Deprotection gave the 7‐iodo‐5‐aza‐7‐deazaguanine 2′‐deoxyribonucleosides 3 (β‐D ; ≥99% de) and 4 (α‐D ; ≥99% de). The reaction sequence performed with the D ‐series was also applied to L ‐nucleosides to furnish compounds 5 (β‐L ; ≥99% de) and 6 (α‐L ; ≥95% de).  相似文献   

3.
Convergent syntheses of the 9‐(3‐X‐2,3‐dideoxy‐2‐fluoro‐β‐D ‐ribofuranosyl)adenines 5 (X=N3) and 7 (X=NH2), as well as of their respective α‐anomers 6 and 8 , are described, using methyl 2‐azido‐5‐O‐benzoyl‐2,3‐dideoxy‐2‐fluoro‐β‐D ‐ribofuranoside ( 4 ) as glycosylating agent. Methyl 5‐O‐benzoyl‐2,3‐dideoxy‐2,3‐difluoro‐β‐D ‐ribofuranoside ( 12 ) was prepared starting from two precursors, and coupled with silylated N6‐benzoyladenine to afford, after deprotection, 2′,3′‐dideoxy‐2′,3′‐difluoroadenosine ( 13 ). Condensation of 1‐O‐acetyl‐3,5‐di‐O‐benzoyl‐2‐deoxy‐2‐fluoro‐β‐D ‐ribofuranose ( 14 ) with silylated N2‐palmitoylguanine gave, after chromatographic separation and deacylation, the N7β‐anomer 17 as the main product, along with 2′‐deoxy‐2′‐fluoroguanosine ( 15 ) and its N9α‐anomer 16 in a ratio of ca. 42 : 24 : 10. An in‐depth conformational analysis of a number of 2,3‐dideoxy‐2‐fluoro‐3‐X‐D ‐ribofuranosides (X=F, N3, NH2, H) as well as of purine and pyrimidine 2‐deoxy‐2‐fluoro‐D ‐ribofuranosyl nucleosides was performed using the PSEUROT (version 6.3) software in combination with NMR studies.  相似文献   

4.
In 2‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐1,2,4‐triazine‐3,5(2H,4H)‐dione (6‐aza‐2′‐deoxy­uridine), C8H11N3O5, (I), the conformation of the glycosylic bond is between anti and high‐anti [χ = −94.0 (3)°], whereas the derivative 2‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐N4‐(2‐methoxy­benzoyl)‐1,2,4‐triazine‐3,5(2H,4H)‐dione (N3‐anisoyl‐6‐aza‐2′‐deoxy­uridine), C16H17N3O7, (II), displays a high‐anti conformation [χ = −86.4 (3)°]. The furanosyl moiety in (I) adopts the S‐type sugar pucker (2T3), with P = 188.1 (2)° and τm = 40.3 (2)°, while the sugar pucker in (II) is N (3T4), with P = 36.1 (3)° and τm = 33.5 (2)°. The crystal structures of (I) and (II) are stabilized by inter­molecular N—H⋯O and O—H⋯O inter­actions.  相似文献   

5.
The title compound, 2,4‐diamino‐5‐bromo‐7‐(2‐deoxy‐2‐fluoro‐β‐d ‐arabinofuranosyl)‐7H‐pyrrolo[2,3‐d]pyrimidine, C11H13BrFN5O3, shows two conformations of the exocyclic C4′—C5′ bond, with the torsion angle γ (O5′—C5′—C4′—C3′) being 170.1 (3)° for conformer 1 (occupancy 0.69) and 60.7 (7)° for conformer 2 (occupancy 0.31). The N‐glycosylic bond exhibits an anti conformation, with χ = −114.8 (4)°. The sugar pucker is N‐type (C3′‐endo; 3T4), with P = 23.3 (4)° and τm = 36.5 (2)°. The compound forms a three‐dimensional network that is stabilized by several intermolecular hydrogen bonds (N—H...O, O—H...N and N—H...Br).  相似文献   

6.
In the title regioisomeric nucleosides, alternatively called 1‐(2‐deoxy‐β‐d ‐erythro‐furan­osyl)‐1H‐pyrazolo­[3,4‐d]­pyrimidine, C10H12N4O3, (II), and 2‐(2‐deoxy‐β‐d ‐erythro‐furan­osyl)‐2H‐pyrazolo­[3,4‐d]pyrimidine, C10H12N4O3, (III), the conformations of the gly­cosyl­ic bonds are anti [?100.4 (2)° for (II) and 15.0 (2)° for (III)]. Both nucleosides adopt an S‐type sugar pucker, which is C2′‐endo‐C3′‐exo (2T3) for (II) and 3′‐exo (between 3E and 4T3) for (III).  相似文献   

7.
The structures of the isomeric nucleosides 4‐nitro‐1‐(β‐d ‐ribo­furan­osyl)‐1H‐indazole, C12H13N3O6, (I), and 4‐nitro‐2‐(β‐d ‐ribo­furan­osyl)‐2H‐indazole, C12H13N3O6, (II), have been determined. For compound (I), the conformation of the gly­cosylic bond is anti [χ = −93.6 (6)°] and the sugar puckering is C2′‐exo–C3′‐endo. Compound (II) shows two conformations in the crystalline state which differ mainly in the sugar pucker; type 1 adopts the C2′‐endo–C3′‐exo sugar puckering associated with a syn base orientation [χ = 43.7 (6)°] and type 2 shows C2′‐exo–C3′‐endo sugar puckering accompanied by a somewhat different syn base orientation [χ = 13.8 (6)°].  相似文献   

8.
A general synthesis of the four isomeric N7α‐D ‐, N7β‐D ‐, N9α‐D ‐, and N9β‐D ‐(purin‐2‐amine deoxynucleoside phosphoramidite) building blocks for DNA synthesis is described (Scheme). The syntheses start with methyl 3′,5′‐di‐O‐acetyl‐2′‐deoxy‐D ‐ribofuranoside ( 2 ) as the sugar component and the N2‐acetyl‐protected 6‐chloropurin‐2‐amine 1 as the base precursor. N7‐Selectivity was achieved by kinetic control, and N9‐selectivity by thermodynamic control of the nucleosidation reaction. The two N7‐(purin‐2‐amine deoxynucleosides) were introduced into the center of a decamer DNA duplex, and their pairing preferences were analyzed by UV‐melting curves. Both the N7α‐D ‐ and N7β‐D ‐(purin‐2‐amine nucleotide) units preferentially pair with a guanine base within the Watson‐Crick pairing regime, with ΔTms of −6.7 and −8.7 K, respectively, relative to a C⋅G base pair (Fig. 3 and Table 1). Molecular modeling suggests that, in the former base pair, the purinamine base is rotated into the syn‐arrangement and is able to form three H‐bonds with O(6), N(1), and NH2 of guanine, whereas in the latter base pair, both bases are in the anti‐arrangement with two H‐bonds between the N(3) and NH2 of guanine, and NH2 and N(1) of the purin‐2‐amine base (Fig. 4).  相似文献   

9.
In the title compound [systematic name: 7‐(2‐de­oxy‐β‐d ‐erythro‐pentofuranos­yl)‐2‐fluoro‐7H‐pyrrolo[2,3‐d]pyrimidin‐2‐amine], C11H13FN4O3, the conformation of the N‐glycosylic bond is between anti and high‐anti [χ = −110.2 (3)°]. The 2′‐deoxy­ribofuranosyl unit adopts the N‐type sugar pucker (4T3), with P = 40.3° and τm = 39.2°. The orientation of the exocyclic C4′—C5′ bond is −ap (trans), with a torsion angle γ = −168.39 (18)°. The nucleobases are arranged head‐to‐head. The crystal structure is stabilized by four inter­molecular hydrogen bonds of types N—H⋯N, N—H⋯O and O—H⋯O.  相似文献   

10.
In continuation of our work, we synthesized 2‐(sulfamoylphenyl)‐4′‐amino‐4‐(4″‐hydroxyphenyl)‐thiazole ( 3a ), which were reacted with various (aryl/hetroaryl) aldehyde to form 2‐(sulfamoylphenyl)‐4′‐(iminoaryl/hetroaryl)‐4‐(4″‐hydroxyphenyl)‐thiazoles ( 4a , 4b , 4c , 4d , 4e , 4f ). Glucosylation of compounds ( 4a , 4b , 4c , 4d , 4e , 4f ) have been done by using acetobromoglucose as a glucosyl donor to afford 2‐(sulfamoylphenyl)‐4′‐(iminoaryl/hetroaryl)‐4‐(2,3,4,6‐tetra‐O‐acetyl‐4″‐O‐β‐D ‐glucosidoxyphenyl)‐thiazoles ( 5a , 5b , 5c , 5d , 5e , 5f ), further on deacetylation to produce 2‐(sulfamoylphenyl)‐4′‐(iminoaryl/hetroaryl)‐4‐(4″‐O‐β‐D ‐glucosidoxyphenyl)‐thiazoles ( 6a , 6b , 6c , 6d , 6e , 6f ). The compounds are confirmed by FTIR, 1H‐NMR, 13C‐NMR, and ES‐Mass spectral analysis. J. Heterocyclic Chem., (2011).  相似文献   

11.
The isomorphous structures of the title molecules, 4‐amino‐1‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐3‐iodo‐1H‐pyrazolo‐[3,4‐d]pyrimidine, (I), C10H12IN5O3, and 4‐amino‐3‐bromo‐1‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐1H‐pyrazolo[3,4‐d]­pyrimidine, (II), C10H12BrN5O3, have been determined. The sugar puckering of both compounds is C1′‐endo (1′E). The N‐­glycosidic bond torsion angle χ1 is in the high‐anti range [?73.2 (4)° for (I) and ?74.1 (4)° for (II)] and the crystal structure is stabilized by hydrogen bonds.  相似文献   

12.
Addition of various amines to the 3,3‐bis(trifluoromethyl)acrylamides 10a and 10b gave the tripeptides 11a – 11f , mostly as mixtures of epimers (Scheme 3). The crystalline tripeptide 11f 2 was found to be the N‐terminal (2‐hydroxyethoxy)‐substituted (R,S,S)‐ester HOCH2CH2O‐D ‐Val(F6)‐MeLeu‐Ala‐OtBu by X‐ray crystallography. The C‐terminal‐protected tripeptide 11f 2 was condensed with the N‐terminus octapeptide 2b to the depsipeptide 12a which was thermally rearranged to the undecapeptide 13a (Scheme 4). The condensation of the epimeric tripeptide 11f 1 with the octapeptide 2b gave the undecapeptide 13b directly. The undecapeptides 13a and 13b were fully deprotected and cyclized to the [5‐[4,4,4,4′,4′,4′‐hexafluoro‐N‐(2‐hydroxyethoxy)‐D ‐valine]]‐ and [5‐[4,4,4,4′,4′,4′‐hexafluoro‐N‐(2‐hydroxyethoxy)‐L ‐valine]]cyclosporins 14a and 14b , respectively (Scheme 5). Rate differences observed for the thermal rearrangements of 12a to 13a and of 12b to 13b are discussed.  相似文献   

13.
A series of 7‐fluorinated 7‐deazapurine 2′‐deoxyribonucleosides related to 2′‐deoxyadenosine, 2′‐deoxyxanthosine, and 2′‐deoxyisoguanosine as well as intermediates 4b – 7b, 8, 9b, 10b , and 17b were synthesized. The 7‐fluoro substituent was introduced in 2,6‐dichloro‐7‐deaza‐9H‐purine ( 11a ) with Selectfluor (Scheme 1). Apart from 2,6‐dichloro‐7‐fluoro‐7‐deaza‐9H‐purine ( 11b ), the 7‐chloro compound 11c was formed as by‐product. The mixture 11b / 11c was used for the glycosylation reaction; the separation of the 7‐fluoro from the 7‐chloro compound was performed on the level of the unprotected nucleosides. Other halogen substituents were introduced with N‐halogenosuccinimides ( 11a → 11c – 11e ). Nucleobase‐anion glycosylation afforded the nucleoside intermediates 13a – 13e (Scheme 2). The 7‐fluoro‐ and the 7‐chloro‐7‐deaza‐2′‐deoxyxanthosines, 5b and 5c , respectively, were obtained from the corresponding MeO compounds 17b and 17c , or 18 (Scheme 6). The 2′‐deoxyisoguanosine derivative 4b was prepared from 2‐chloro‐7‐fluoro‐7‐deaza‐2′‐deoxyadenosine 6b via a photochemically induced nucleophilic displacement reaction (Scheme 5). The pKa values of the halogenated nucleosides were determined (Table 3). 13C‐NMR Chemical‐shift dependencies of C(7), C(5), and C(8) were related to the electronegativity of the 7‐halogen substituents (Fig. 3). In aqueous solution, 7‐halogenated 2′‐deoxyribonucleosides show an approximately 70% S population (Fig. 2 and Table 1).  相似文献   

14.
In the title compound [systematic name: 4‐amino‐7‐(β‐d ‐ribofuranos­yl)‐7H‐pyrazolo[3,4‐d][1,2,3]triazine], C9H12N6O4, the torsion angle of the N‐glycosylic bond is high anti [χ = −83.2 (3)°]. The ribofuran­ose moiety adopts the C2′‐endo–C1′‐exo (2T1) sugar conformation (S‐type sugar pucker), with P = 152.4° and τm = 35.0°. The conformation at the C4′—C5′ bond is +sc (gauche,gauche), with the torsion angle γ = 52.0 (3)°. The compound forms a three‐dimensional network that is stabilized by several hydrogen bonds (N—H⋯O, O—H⋯N and O—H⋯O).  相似文献   

15.
In the title compound, 4‐amino‐2‐(2‐O‐methyl‐β‐d ‐ribofuranos­yl)‐2H‐pyrazolo[3,4‐d]pyrimidine monohydrate, C11H15N5O4·H2O, the conformation of the N‐glycosylic bond is syn [χ = 20.1 (2)°]. The ribofuran­ose moiety shows a C3′‐endo (3T2) sugar puckering (N‐type sugar), and the conformation at the exocyclic C4′—C5′ bond is −ap (trans). The nucleobases are stacked head‐to‐head. The three‐dimensional packing of the crystal structure is stabilized by hydrogen bonds between the 2′‐O‐methyl­ribonucleosides and the solvent mol­ecules.  相似文献   

16.
In the title compound, 2‐amino‐1‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐5‐methyl­pyrimidin‐4(1H)‐one, C10H15N3O4, the conformation of the N‐glycosidic bond is syn and the 2‐deoxy­ribo­furan­ose moiety adopts an unusual OT1 sugar pucker. The orientation of the exocyclic C4′—C5′ bond is +sc (+gauche).  相似文献   

17.
In the monohydrate of 2‐amino‐8‐(2‐deoxy‐α‐d ‐erythro‐pento­furan­osyl)‐8H‐imidazo­[1,2‐a]­[1,3,5]­triazin‐4‐one, C10H13N5O4·H2O, denoted (I) or αZd, the conformation of the N‐gly­cosyl­ic bond is in the high‐anti range [χ = 87.5 (3)°]. The 2′‐deoxy­ribo­furan­ose moiety adopts a C2′‐endo,C3′‐exo(2′T3′) sugar puckering (S‐type sugar) and the conformation at the C4′—C5′ bond is ?sc (trans).  相似文献   

18.
In the crystal structure of the l ‐His–cIMP complex, i.e.l ‐histidinium inosine 3′:5′‐cyclic phosphate [systematic name: 5‐(2‐amino‐2‐carboxyethyl)‐1H‐imidazol‐3‐ium 7‐hydroxy‐2‐oxo‐6‐(6‐oxo‐6,9‐dihydro‐1H‐purin‐9‐yl)‐4a,6,7,7a‐tetrahydro‐4H‐1,3,5,2λ5‐furo[3,2‐d][1,3,2λ5]dioxaphosphinin‐2‐olate], C6H10N3O2+·C10H10N4O7P, the Hoogsteen edge of the hypoxanthine (Hyp) base of cIMP and the Hyp face are engaged in specific amino acid–nucleotide (His...cIMP) recognition, i.e. by abutting edge‐to‐edge and by π–π stacking, respectively. The Watson–Crick edge of Hyp and the cIMP phosphate group play a role in nonspecific His...cIMP contacts. The interactions between the cIMP anions (anti/C3′–endo/transgauche/chair conformers) are realized mainly between riboses and phosphate groups. The results for this l ‐His–cIMP complex, compared with those for the previously reported solvated l ‐His–IMP crystal structure, indicate a different nature of amino acid–nucleotide recognition and interactions upon the 3′:5′‐cyclization of the nucleotide phosphate group.  相似文献   

19.
In the title compound, 4‐amino‐1‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐1H‐benzotriazole, C11H14N4O3, the conformation of the N‐glycosidic bond is in the high‐anti range [χ = ?77.1 (4)°] and the 2′‐deoxy­ribo­furan­ose moiety adopts a 2′‐­endo (2E) sugar puckering. The 5′‐hydroxyl group is disordered and has conformations ap with γ = 171.1 (3)° [occupation of 61.4 (3)%] and +sc with γ = 52.4 (6)° [occupation of 38.6 (3)%]. The nucleobases are stacked in the crystal state.  相似文献   

20.
In 4‐chloro‐7‐(2‐de­oxy‐β‐d ‐erythro‐pento­furanos­yl)‐7H‐pyr­rolo­[2,3‐d]­pyrimidine‐2,4‐diamine, C11H14ClN5O3, the conformation of the N‐glycosylic bond is between anti and high‐anti [χ = −102.5 (6)°]. The 2′‐deoxy­ribofuranosyl unit adopts the C3′‐endo‐C4′‐exo (3T4) sugar pucker (N‐type) with P = 19.6° and τm = 32.9° [terminology: Saenger (1989). Landolt‐Börnstein New Series, Vol. 1, Nucleic Acids, Subvol. a, edited by O. Madelung, pp. 1–21. Berlin: Springer‐Verlag]. The orientation of the exocyclic C4′—C5′ bond is +ap (trans) with a torsion angle γ = 171.5 (4)°. The compound forms a three‐dimensional network that is stabilized by four inter­molecular hydrogen bonds (N—H⋯O and O—H⋯N) and one intra­molecular hydrogen bond (N—H⋯Cl).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号