首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
基于密度泛函理论的第一性原理计算,系统研究了类石墨烯氮化镓(g-GaN)和掺杂过渡金属原子(TM)的g-GaN对Cl2和CO气体分子的吸附行为。结果表明,Cl2和CO在本征g-GaN上的吸附均为物理吸附,2个体系的吸附能均为正值,表明体系不稳定。相反,Cl2和CO在Fe和Co掺杂的g-GaN上吸附时的吸附能为负值,且吸附能较小,表明吸附体系稳定。通过分析态密度、电荷密度差和能带结构等性质,可以得出结论:过渡金属原子的引入能有效增强气体分子与g-GaN之间的相互作用。  相似文献   

2.
郝兰  王艳  陈光巨 《化学学报》2008,66(9):1028-1036
采用固体镶嵌势能模型和DFT/B3LYP方法研究了在Pd/MgO和Cu/MgO表面吸附CO和O2分子的电子性质. 计算结果表明, 在完美MgO(100)表面Pd原子对CO和O2的吸附能分别为206.5和84.8 kJ/mol, 因此可知Pd原子更容易吸附CO分子; 而当Pd原子附着于有氧缺陷的MgO表面时, 它对两种分子的吸附都非常弱. 相反, 附着于MgO表面的Cu原子对O2分子的吸附更为有利, 其吸附能在140~155 kJ/mol之间. 研究结果还表明, 对于双分子吸附体系, 即CO+CO, CO+O2, O2+O2体系, 双分子之间的结合力可减小完美MgO表面上Pd原子与被吸附分子的相互作用, 使吸附能减少了46~96 kJ/mol. 而对于在MgO表面上的Cu原子, 只有O2+O2 体系使吸附能减少了大约50~71 kJ/mol.  相似文献   

3.
过渡金属氧化物掺杂对铜锰氧化物催化CO氧化性能的影响   总被引:2,自引:0,他引:2  
以乙酸铜和乙酸锰为铜锰前驱体,以NH4HCO3为沉淀剂,相应金属硝酸盐为掺杂剂,采用共沉淀法制备了不同过渡金属氧化物掺杂的铜锰氧化物催化剂.?采用N2物理吸附、X射线衍射,氢气-程序升温还原和原位红外漫反射光谱等方法对催化剂进行了表征,考察了系列催化剂上CO反应性能.?结果表明,掺杂过渡金属氧化物可以调变催化剂对CO的吸附能力,进而影响催化剂性能.  相似文献   

4.
采用基于密度泛函理论的第一性原理方法和平板模型研究了CH3SH分子在Cu(111)表面的吸附反应.系统地计算了S原子在不同位置以不同方式吸附的一系列构型, 第一次得到未解离的CH3SH分子在Cu(111)表面顶位上的稳定吸附构型,该构型吸附属于弱的化学吸附, 吸附能为0.39 eV. 计算同时发现在热力学上解离结构比未解离结构更加稳定. 解离的CH3S吸附在桥位和中空位之间, 吸附能为0.75-0.77 eV. 计算分析了未解离吸附到解离吸附的两条反应路径, 最小能量路径的能垒为0.57 eV. 计算结果还表明S―H键断裂后的H原子并不是以H2分子的形式从表面解吸附而是以与表面成键的形式存在. 通过比较S原子在独立的CH3SH分子和吸附状态下的局域态密度, 发现S―H键断裂后S原子和表面的键合强于未断裂时S原子和表面的键合.  相似文献   

5.
采用平面波超软赝势方法研究了硼掺杂单层MoSi2N4的锂离子吸附与扩散行为。建立了替换位、间隙位、吸附位硼掺杂单层MoSi2N4三类物理模型(共6种构型)。结果表明:硼原子替换表面氮原子的构型最为稳定,该构型下的锂离子吸附能在-1.540~-1.910 eV之间。通过分析电子密度差分图,可知硼掺杂引起MoSi2N4表面的电荷重新分布,即硼与氮获得了来自锂离子的电子转移,导致锂离子在其表面吸附能增加。比较锂离子在硼掺杂MoSi2N4表面的吸附能,推断其扩散路径为D→F,扩散势垒为0.077 eV,表明锂离子在该表面具有较高的脱嵌速率。  相似文献   

6.
使用第一性原理研究了C位掺杂的g-C3N4的电学性质和光学性质,掺杂原子为B、P、S. g-C3N4有C1位和C2 位两种对称位碳原子,其中在C1 位上的掺杂易于C2 位,掺杂体系也较C2 位稳定. 相比于磷和硫在g-C3N4上的掺杂,硼掺杂最易于进行. 掺杂后体系的晶体结构之间差别较大,这与掺杂原子的大小以及电负性有关. 由轨道布居分布可知,掺杂后的硼、磷、硫原子价电子发生了变化,表明掺杂原子发生了杂化,与相邻原子以强的共价键相连. 掺杂原子与被取代的碳原子之间的价电子差异导致了能带的增加. 在原来的体系中,掺杂后的体系出现了一条新的能带,因此导致实际带隙下降,表明了掺杂后的体系导电性能增强. 对纯g-C3N4及掺杂g-C3N4的光学性质分析表明,g-C3N4的光学吸收主要在紫外光区,掺杂磷和硫后对g-C3N4的光吸收波长范围无改变,掺杂硼后的g-C3N4光吸收不再局限于紫外光区,而且延伸至可见光区和红外光区,并在红外光区有很强的吸收,表明g-C3N4掺杂硼后能大大地提高光催化效率. 电子能量损失光谱和光导率谱以及介电常数都佐证了上述观点.  相似文献   

7.
提出了两个稳定的团簇B12Sc4和B12Ti4, 基于理论计算, 研究了它们的结构与储氢性质. 结果发现, 在这两个稳定的团簇中, 过渡金属原子不会聚合在一起而影响它们对氢气的吸附. B12Sc4最多可以吸附12个氢分子, 达到7.25% (质量分数)的储氢量. 它的平均每氢分子吸附能量为10.5 kJ·mol-1. B12Ti4最多只能吸附8个氢分子, 储氢量为4.78%. 但平均每氢分子吸附能量可达50.2 kJ·mol-1. 进一步计算表明, 即使在77 K,也需要很高的氢气压力才能使12个氢分子都吸附到B12Sc4上. 电子结构分析表明, B12Ti4-nH2吸附结构中的Kubas作用要大于相应B12Sc4-nH2结构中的Kubas作用.  相似文献   

8.
采用基于密度泛函理论的投影缀加波方法研究了Au、Ag、Cu吸附在缺陷石墨烯单侧和双侧的体系,对吸附体系的吸附能、磁性、电荷转移和电子结构进行了计算和分析. 缺陷石墨烯吸附Au、Ag、Cu体系的吸附能比本征石墨烯增加2 eV以上,说明三种金属原子更容易吸附在缺陷位置;吸附体系的电荷密度差分和电子结构的结果表明,Au、Ag、Cu与缺陷石墨烯之间均为化学吸附. 计算吸附体系的磁性发现,单侧吸附时三种吸附体系均有磁性,磁矩大约为1μB;双侧吸附时,三种吸附体系磁矩大约为2μB.  相似文献   

9.
通过一锅还原法成功制备了合金纳米团簇Au11-xCux(dppf)4Cl2(x=1、2;dppf=1,1''-双(二苯基膦)二茂铁)。晶体结构解析表明,合金团簇具有与 Au11(dppf)4Cl2类似的几何结构,如含有缺陷二十面体金属内核,不同之处在于 Cu原子取代了与 Cl配位的Au原子。因此,Au11-xCux(dppf)4Cl2可视为Cu对Au11(dppf)4Cl2模板团簇的掺杂。Cu原子的引入并未改变模板团簇Au11(dppf)4Cl2的框架结构,但有效调控了电子结构,进而使其光吸收发生红移。  相似文献   

10.
采用基于密度泛函理论(DFT)的第一性原理投影缀加波方法, 研究了Li 修饰的B12N12笼子的储氢行为.计算结果表明: Li 原子吸附在B12N12笼子的四元环和六元环相交的B-N桥位上, 相对于其它六个高对称吸附位置更稳定, B12N12笼子周围最多可以吸附3 个Li 原子, 最稳定的构型是三个Li 原子同时吸附在N原子顶位(Top-N site). 每个Li 原子的周围能吸附三个氢分子, 笼子外侧还可以吸附两个氢分子, 内部最多可以吸附5 个氢分子. 考虑到笼内和笼外的吸附, B12N12笼子总的储氢量(氢分子)达到9.1% (w).  相似文献   

11.
By using first‐principles calculations based on density functional theory, we study the adsorption efficiency of a BC3 sheet for various gases, such as CO, CO2, NO, NO2, and NH3. The optimal adsorption position and orientation of these gas molecules on the BC3 surface is determined and the adsorption energies are calculated. Among the gas molecules, CO2 is predicted to be weakly adsorbed on the graphene‐like BC3 sheet, whereas the NH3 gas molecule shows a strong interaction with the BC3 sheet. The charge transfer between the molecules and the sheet is discussed in terms of Bader charge analysis and density of states. The calculated work function of BC3 in the presence of CO, CO2, and NO is greater than that of a bare BC3 sheet. The decrease in the work function of BC3 sheets in the presence of NO2 and NH3 further explains the affinity of the sheet towards the gas molecules. The energy gap of the BC3 sheets is sensitive to the adsorption of the gas molecules, which implies possible future applications in gas sensors.  相似文献   

12.
Engineering the adsorption of molecules on active sites is an integral and challenging part for the design of highly efficient transition‐metal‐based catalysts for methanol dehydrogenation. A Mott–Schottky catalyst composed of Ni nanoparticles and tailorable nitrogen‐doped carbon‐foam (Ni/NCF) and thus tunable adsorption energy is presented for highly efficient and selective dehydrogenation of gas‐phase methanol to hydrogen and CO even under relatively high weight hourly space velocities (WHSV). Both theoretical and experimental results reveal the key role of the rectifying contact at the Ni/NCF boundaries in tailoring the electron density of Ni species and enhancing the absorption energies of methanol molecules, which leads to a remarkably high turnover frequency (TOF) value (356 mol methanol mol?1 Ni h?1 at 350 °C), outpacing previously reported bench‐marked transition‐metal catalysts 10‐fold.  相似文献   

13.
In this study, oxygen molecule adsorption on the surface of aluminum at various positions (top, bridge, and central sites) was studied, and the binding energies of oxygen species adsorbed on aluminum were calculated using density functional theory (DFT) within the generalized gradient approximation (GGA). The potential of the adsorption of oxygen on aluminum was examined as a function of both surface coverage and adsorption site. The relative stabilities of oxygen chemisorptions were independent of both the transition metal surface and surface coverage. That is, oxygen exhibited insignificant selectivity with respect to positions on the metal surface. Our data O2/Al surface chemisorptions revealed that the stables model for oxygen adsorption was that on the top site. The top site approach is important for the chemisorption processes because the adsorption energy for this model was lower than for the other sites. The paper presents the results of quantum chemical calculations using density functional theory method for adsorption of O2 molecules on Al (100) surface at cubic structure with LANL2DZ, SDD and 6-31G1 basis sets. We can extract energetic information about the stability of adsorption O2 on aluminum surface and calculation adsorption energy.  相似文献   

14.
The rapidly growing interest for new heterogeneous catalytic systems providing high atomic efficiency along with high stability and reactivity triggered an impressive progress in the field of single-atom catalysis. Nevertheless, unravelling the factors governing the interaction strength between the support and the adsorbed metal atoms remains a major challenge. Based on periodic density functional theory (DFT) calculations, this paper provides insight into the adsorption of single late transition metals on a defect-free anatase surface. The obtained adsorption energies fluctuate, with the exception of Pd, between −3.11 and −3.80 eV and are indicative of a strong interaction. Depending on the considered transition metal, we could attribute the strength of this interaction with the support to i) an electron transfer towards anatase (Ru, Rh, Ni), ii) s-d orbital hybridisation effects (Pt), or iii) a synergistic effect between both factors (Fe, Co, Os, Ir). The driving forces behind the adsorption were also found to be strongly related to Klechkowsky's rule for orbital filling. In contrast, the deviating behaviour of Pd is most likely associated with the lower dissociation enthalpy of the Pd−O bond. Additionally, the reactivity of these systems was evaluated using the Fermi weighted density of states approach. The resulting softness values can be clearly related to the electron configuration of the catalytic systems as well as with the net charge on the transition metal. Finally, these indices were used to construct a model that predicts the adsorption strength of CO on these anatase-supported d-metal atoms. The values obtained from this regression model show, within a 95 % probability interval, a correlation of 84 % with the explicitly calculated CO adsorption energies.  相似文献   

15.
In order to realize the sulfur and water resistance and facilitate the CO oxidation reactions,the effects of strain on the adsorption of CO,O2,SO2 and H2O molecules on Ni single-atom-catalyst supported by single-carbon-vacancy graphene(Ni-SG) have been studied based on first principles calculations.It shows that the compressive strain increases the adsorption energies of all above mentioned molecules on Ni-SG,where SO2 is adsorbed more strongly on Ni-S...  相似文献   

16.
Adsorptions of small toxic molecules such as CO, N2, HCN, SO2, H2CO, and NH3 on a single‐walled (6,0) SnC nanotube (SnCNT) are investigated using Quantum Mechanics/Molecular Mechanics (QM/MM) methodology. The calculations are carried out at the B3LYP/6‐311++G(d,p)//LANL2DZ:UFF level of theory. The high layer of the model consists of a pyrene‐type ring on the nanotube surface as the adsorption site, where one gas molecule is allowed to interact. Conversely, for the adsorption of the two molecules, a larger site like a coronene ring is used for the high layer. Adsorption energy, Gibbs free energy change, Mulliken charge transfer, and total electron‐density maps are computed in each case. The adsorption strength of the gas molecule on the SnCNT surface is also analyzed from the density of states projected to different atoms (PDOS) of the nanotube–adsorbate complexes. The adsorptions of CO and N2 on the (6,0) SnCNT surface require to cross potential barriers, and the corresponding transition structures are identified by ONIOM‐IRC calculations. For the remaining four molecules, the processes of adsorption are predicted to be barrier‐less. The calculations for the adsorption of H2CO on (5,0) and (7,0) SnCNT surfaces are extended to study the effect of the size of the nanotube. Results for the adsorption of a single molecule on (6,0) SnCNT using B3LYP functional are compared with those obtained from a dispersion corrected functional such as M06‐2X. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
A long standing question in the study of supported clusters of metal atoms in the properties of metal–oxide interfaces is the extent of metal–oxide charge transfer. However, the determination of this charge transfer is far from straight forward and a combination of different methods (both experimental and theoretical) is required. In this paper, we systematically study the charging of some adsorbed transition metal atoms on two widely used metal oxides surfaces [α-Al2O3 (0001) and rutile TiO2 (110)]. Two procedures are combined to this end: the computed vibrational shift of the CO molecule, that is used as a probe, and the calculation of the atoms charges from a Bader analysis of the electron density of the systems under study. At difference from previous studies that directly compared the vibrational vawenumber of adsorbed CO with that of the gas phase molecule, we have validated the procedure by comparison of the computed CO stretching wavenumbers in isolated monocarbonyls (MCO) and their singly charged ions with experimental data for these species in rare gas matrices. It is found that the computational results correctly reproduce the experimental trend for the observed shift on the CO stretching mode but that care must be taken for negatively charged complexes as in this case there is a significative difference between the total charge of the MCO complex and the charge of the M atom. For the supported adatoms, our results show that while Cu and Ag atoms show a partial charge transfer to the Al2O3 surface, this is not the case for Au adatoms, that are basically neutral on the most stable adsorption site. Pd and Pt adatoms also show a significative amount of charge transfer to this surface. On the TiO2 surface our results allow an interpretation of previous contradictory data by showing that the adsorption of the probe molecule may repolarize the Au adatoms, that are basically neutral when isolated, and show the presence of highly charged Auδ+–CO complexes. The other two coinage metal atoms are found to significatively reduce the TiO2 surface. The combined use of the shift on the vibrational frequency of the CO molecule and the computation of the Bader charges shows to be an useful tool for the study the charge state of adsorbed transition metal atoms and allow to rationalize the information coming from complementary tools.  相似文献   

18.
We used density functional theory to investigate the capacity for carbon monoxide (CO) release of five newly synthesized manganese‐containing CO‐releasing molecules (CO‐RMs), namely CORM‐368 ( 1 ), CORM‐401 ( 2 ), CORM‐371 ( 3 ), CORM‐409 ( 4 ), and CORM‐313 ( 5 ). The results correctly discriminated good CO releasers ( 1 and 2 ) from a compound unable to release CO ( 5 ). The predicted Mn? CO bond dissociation energies were well correlated (R2≈0.9) with myoglobin (Mb) assay experiments, which quantified the formation of MbCO, and thus the amount of CO released by the CO‐RMs. The nature of the Mn? CO bond was characterized by natural bond orbital (NBO) analysis. This allowed us to identify the key donor–acceptor interactions in the CO‐RMs, and to evaluate the Mn? CO bond stabilization energies. According to the NBO calculations, the charge transfer is the major source of Mn? CO bond stabilization for this series. On the basis of the nature of the experimental buffers, we then analyzed the nucleophilic attack of putative ligands (L′=HPO42?, H2PO4?, H2O, and Cl?) at the metal vacant site through the ligand‐exchange reaction energies. The analysis revealed that different L′‐exchange reactions were spontaneous in all the CO‐RMs. Finally, the calculated second dissociation energies could explain the stoichiometry obtained with the Mb assay experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号