首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present contribution deals with the Raman spectra and structure of Na2O–MgO–CaO–SiO2 glasses. Six glasses with the trisilicate overall composition 15Na2xMgO·(10–x)CaO·75SiO2 (x = 0, 2, 4, 6, 8, 10) were studied. The structure of studied glasses was described by the thermodynamic model of Shakhmatkin and Vedishcheva. From the 27 components with the stoichiometry given by the composition of stable crystalline phases, only eight were found in significant abundance in the studied glasses—namely: SiO2, 2MgO·SiO2 (M2S), MgO·SiO2 (MS), Na2O·3CaO·6SiO2 (NC3S6), Na2O·CaO·5SiO2 (NCS5), Na2O·MgO·4SiO2 (NMS4), Na2SiO2 (NS), and Na2O·2SiO2 (NS2). The correlation analysis points out that the strong positive correlations between the equilibrium molar amounts of: {M2S–MS–SiO2}, {NC3S6–NCS5}, and {NMS4–NS–NS2}. From the components of significant abundance, only the content of MS and NC3S6 change significantly within the studied compositional series. These two components were identified with the result of the principal component analysis of Raman spectra that indicated the presence of two independent spectral components. Using the method of Malfait the partial Raman spectra of MS and NC3S6 components were found. The obtained results very well reproduce the experimental Raman spectra and confirmed in such way the thermodynamic model.  相似文献   

2.
The aqueous solubility of CdCO3(c) was studied in 0.01M NaClO4, in solutions equilibrated with N2-CO2(g) mixtures that contained 0.0003, 0.001, or 0.138 atmospheres of CO2(g). The pH ranged from about 4.5 to 9, and the studies were conducted from both the oversaturation and the undersaturation directions, with the equilibration periods ranging from 6 to 57 d. To determine the carbonato complexes of Cd(II), the solubility of CdCO3(c) was also studied in 0.0016 to 1.00M Na2CO3 solutions at fixed hydroxide ion concentration, and in solutions with fixed aqueous C concentrations (0.1 and 0.01M C) over a range of OH? from 1×10?5 to 1.0M. The equilibrium Cd concentrations were reached in less than about 6 d. Pitzer's ion-interaction model was used to interpret these solubility data, as well as CdCO3(c) solubility data reported in the literature, which extended to 5.0M K2CO3 with an ionic strength of approximately 18.6 m. Our thermodynamic model required the introduction of two aqueous Cd2+-CO 3 2? complexes, CdCO3(aq) and Cd(CO3) 2 2? , as well as ion-interaction parameters for Cd(CO3) 2 2? with the bulk cations Na+ and K+. This model gave excellent agreement with all available experimental data extending to 5.0M K2CO3. The logarithms of the thermodynamic equilibrium constants for the reactions: $$\begin{gathered} CdCO_3 \left( c \right) \rightleftarrows Cd^{2 + } + CO_3^{2 - } \hfill \\ Cd^{2 + } + CO_3^{2 - } \rightleftarrows CdCO_3 \left( {aq} \right) \hfill \\ Cd^{2 + } + 2CO_3^{2 - } \rightleftarrows Cd\left( {CO_3 } \right)_2^{2 - } \hfill \\ \end{gathered} $$ were found to be ?12.24±0.1, 4.71±0.1, and 6.49±0.1, respectively. The β0 ion-interaction parameters for Cd(CO3) 2 2? ?Na+ and Cd(CO3) 2 2? ?K+ were found to be ?0.14 and ?0.06, respectively.  相似文献   

3.
Data on the viscosity η of moderately concentrated solutions of polystyrene are reported. Several solvents were investigated, including cyclopentane solutions over a temperature span between θU = 19.5°C and θL = 154.5°C. The data were analyzed in terms of a relation giving η as a function of αφM, where αφ is the expansion factor for the chain dimensions in a solution with volume fraction φ of polymer with molecular weight M. It is shown that values of αφ so determined decrease as ? lnαφ/? lnφ = (1 ? 2μ)/6μ for φ greater than φ* = 0.2M/s3 for moderately concentrated solutions, where s is the root-mean-square radius of gyration and μ = ? ln[η]/? lnM with [η] the intrinsic viscosity.  相似文献   

4.
Spectrophotometric studies have revealed that ozone oxidizes Cr(III) into Cr(VI), Fe(III) into Fe(VI), Mn(VI) into Mn(VII), and Np(VI) into Np(VII) in the concentrated aqueous silicate solutions. Cr(III) oxidation is accelerated in alkaline-silicate and alkaline solutions as compared to neutral silicate solution. Ferrate and permanganate ions are unstable in Na2SiO3 solutions (0.5–1.3 mol/L of the silicate). Neptunium(VII) ions formed in the course of ozonation are stable in Na2SiO3 solution (1 mol/L) upon drying in air to form solid vitreous mass.  相似文献   

5.
Chemical looping combustion (CLC) of coal has gained increasing attention as a novel combustion technology for its attractive advantage in the inherent separation of CO2. In relative to the single metal oxide-based oxygen carrier (OC), combined OC owned superiority for CLC of coal. In this research, combined NiFe2O4 OC was synthesized using sol–gel combustion synthesis method, and its reaction with a typical Chinese high-sulfur coal as Liuzhi (LZ) coal was performed in a thermogravimetric analyzer (TG). And then, systematic investigation was carried out to explore the evolution of sulfur species and minerals involved in coal and their interaction with the reduced NiFe2O4 OC through different means, including fourier transform infrared (FTIR), field scanning electron microscopy/energy-dispersive X-ray spectrometry, X-ray diffraction, and thermodynamic simulation. TG–FTIR analysis of LZ reaction with NiFe2O4 indicated that two reaction stages were experienced at 350–550 and 800–900 °C, respectively, far different from LZ pyrolysis, and SO2 occurred mainly related to oxidization of H2S with NiFe2O4 over 550 °C. Meanwhile, lattice oxygen transfer rates of NiFe2O4 involved at the two reaction stages were higher than that of directly mixed NiO with Fe2O3 OC and thus more beneficial for LZ coal conversion. Both experimental means and thermodynamic simulation of the solid-reduced residues of NiFe2O4 with LZ coal indicated that the main-reduced counterparts of NiFe2O4 were Ni and Fe3O4. In addition, though good regeneration of the reduced NiFe2O4 was reached, the side products Ni3S2 and Ni2SiO4 should be noted as well for its detrimental effect on the reactivity of NiFe2O4 OC.  相似文献   

6.
Major processing factors in forming Fe2SiO4/SiO2 and Fe2O3/SiO2 powders via sol–gel synthesis followed by solid-state reactions are investigated. The results clearly indicate that the chemical compositions of the precursors, the ratio of the precursors, the nature of the catalyst used, and the gas atmosphere during solid-state reactions can all affect the outcome of the reaction product(s). The formation of Fe2SiO4/SiO2 is enhanced by using the precursor iron(III) acetylacetonate as the Fe source with the precursor ratio of iron(III) acetylacetonate to tetraethyl orthosilicate being 1:1 and the addition of formic acid. Otherwise, crystalline Fe and Fe3C are formed in place of Fe2SiO4. By altering the gas atmosphere during solid-state reactions from argon to oxygen, the reaction products change from Fe2SiO4/SiO2 to Fe2O3/SiO2. All of the observed phenomena can be rationalized via the degree of mixing of the Fe–O and Si–O domains at the molecular level in the gel network during sol–gel reactions and the presence of a reducing or oxidizing atmosphere during the solid-state reaction.  相似文献   

7.
0.94Na0.5Bi0.5TiO3–0.06BaTiO3 (NBT–6BT) and (0.94 ? x)Na0.5Bi0.5TiO3–0.06BaTiO3xBiFeO3 (NBT–6BT–xBFO, x = 0.03, 0.05 and 0.08) thin films were deposited on Pt/Ti/SiO2/Si substrates by a sol–gel process. Relative permittivity and remnant polarization were maximized at 5 % BFO substitution. Compared with 0.94NBT–0.06BT, the leakage current density of 0.89NBT–0.06BT–0.05BFO at 600 kV/cm is reduced by one order of magnitude. Enhanced ferroelectricity was also achieved in 0.89NBT–0.06BT–0.05BFO, the remnant polarization (2P r) values of 0.89NBT–0.06BT–0.05BFO and 0.94NBT–0.06BT are 46 and 24 µC/cm2.  相似文献   

8.
Nickel and silver particles were prepared by using sol–gel auto-combustion method under N2 atmosphere where lactic acid was applied as chelating agent. The synthesis of nickel particles was carried out at various pH conditions (2–7), resulting in the face-centered-cubic or hexagonal-close-packed crystalline nickel phase. The morphology and structure of synthesized nickel particles and silver nanoparticles were characterized by X-ray diffraction, transmission electron microscope, energy dispersive X-Ray spectroscopy and differential scanning calorimetry-thermogravimetric analysis. The results show that the spherical Ag nanoparticles with diameters in the range of 18–27 nm and narrow size distribution can be obtained by this sol–gel process.  相似文献   

9.
In this work we show the synthesis and characterization of TiO2 and TiO2/SiO2 nanoparticles synthesized by sol–gel method using HF and HCl as catalysts. The obtained nanoparticles were analyzed by N2 adsorption–desorption isotherms, transmission electronic microscopy, Ultraviolet–visible spectroscopy and X-ray diffractometry. Mesoporous, homogeneously polycondensed TiO2/SiO2 materials, containing nanocrystalline anatase phase with band gap similar to pure titania were obtained. Films of the powdered oxides were applied to assemble dye sensitized solar cells that presented electrical parameters, Fill Factor and efficiencies similar to devices obtained by only TiO2. The sol–gel route arises as an alternative way to prepare TiO2/SiO2 materials for solar cells.  相似文献   

10.
Measurements of the viscosity coefficient η of solutions of polystyrene (Mw = 6.0 × 105 and 1.77 × 106) in trans-decalin (TD, θ solvent) and toluene (TL, good solvent) as function of shear rate (11?104 s?1), concentration (4.24?11.21 wt %), and temperature (10–50°C) are reported. As a new theoretically grounded method for the determination of the zero-shear viscosity η0 it is proposed to plot η as a function of $\left({\eta \dot \gamma} \right)^3$. The intercepts of the straight lines obtained by this procedure give η0 in good agreement with directly measured values.  相似文献   

11.
Property of a gel that responses to heat change contributes many advantages in topical application where the rheological properties illustrate stability of gel during storage and its spreadability upon application. In this work, a gel mixture consists of carboxymethyl cellulose (CMC) and iota-carrageenan (ι-C) was prepared and its rheological properties under temperature and Ca2+ ions effect were evaluated. Subsequently, hydroquinone was incorporated into the optimized gel formulation to study its in vitro release at 30 and 37°C. Higher concentration of cation Ca2+ was proven to increase the gel strength, however there was a limit where the concentration of cation does not affect the viscosity η and storage modulus G' of the system anymore. The phase transition of the gel mixture from solid-like to liquid-like was thermally activated and reversible. The gel mixture with gelling point in the vicinity of body temperature was selected as the optimized formulation. In vitro release revealed the effect of thermoresponsive behavior of gel on delivery of active ingredient. The formulation showed flowing behavior at 37°C where it provided enhanced release of hydroquinone. These results suggested that gel mixture of CMC and ι-C is a good candidate to be developed as a thermoresponsive gel for topical delivery of hydroquinone.  相似文献   

12.
Stable-isotope dimethyl labeling was applied to the quantification of genetically modified (GM) soya. The herbicide-resistant gene-related protein 5-enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) was labeled using a dimethyl labeling reagent, formaldehyde-H2 or -D2. The identification and quantification of CP4 EPSPS was performed using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The CP4 EPSPS protein was separated from high abundance proteins using strong anion exchange chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Then, the tryptic peptides from the samples and reference were labeled with formaldehyde-H2 and formaldehyde-D2, respectively. The two labeled pools were mixed and analyzed using MALDI-MS. The data showed a good correlation between the peak ratio of the H- and D-labeled peptides and the GM soya percentages at 0.5, 1, 3, and 5 %, with R 2 of 0.99. The labeling reagents are readily available. The labeling experiments and the detection procedures are simple. The approach is useful for the quantification of GM soya at a level as low as 0.5 %.  相似文献   

13.
Anatase titanium dioxide nanoparticles (TiO2-NPs) were synthesized with and without gelatin via the sol-gel method. The TiO2-NPs were characterized by a number of techniques, such as thermogravimetric analysis (TGA), X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FT-IR) and ultraviolet visible spectroscopy (UV-Vis). The particle sizes of the TiO2-NPs prepared with and without gelatin were ~13 and ~17 nm, respectively. The main advantage of using gelatin as a stabilizing agent is that it provides long-term stability for nanoparticles by preventing particles agglomeration. The results indicated that gelatin was a reliable green stabilizer, which can be used as a polymerization agent in the sol-gel method for synthesis of tiny size TiO2-NPs. Moreover, the composite film was prepared by synthesized TiO2-NPs nanoparticles and multi wall carbon nanotube (MWNT) on glassy carbon electrode (TiO2-MWNT/GCE). The TiO2-MWNT/GCE responded linearly to L-tryptophan (L-Trp) in the concentration of 1.0 × 10?6 to 1.5 × 10?4 M with detection limit of 5.2 × 10?7 M at 3 using amperometry. The studied sensor exhibited good reproducibility and long-term stability.  相似文献   

14.
Biological conversion of low-Btu coal synthesis gas to higher Btu methane was demonstrated using both pure co-cultures and/or adapted-mixed anaerobic bacteria.Peptostreptococcus productus metabolized coal gas to mainly acetate and CO2. The co-cultures containing methanogens converted these products to methane. In mixed culture studies, CH4 and small amounts of acetate were produced. Reactor studies using stirred-tank and immobilized cell reactors exhibited excellent potential to convert CO, CO2 and H2 to methane at higher gas flow rates. Gas retention times ranging from 0.7 to 2 hours and high agitation were required for 90 percent CO conversion in these systems. This paper also illustrates the potential of biological methanation and demonstrates the need for good mass transfer in converting gas phase substrates.  相似文献   

15.
The effects of iron on the structural properties of Zn-borosilicate glasses have been studied using X-ray diffraction, IR spectroscopy and57Fe Mössbauer spectroscopy. Zn-borosilicate glasses were doped with α?Fe2O3. In the systems Na2O?ZnO?B2O3?SiO2?Fe2O3 the presence of only one crystalline phase, ZnFe2O4, was detected. X-ray diffraction showed that crystallization is more pronounced in the systems ZnO?B2O3?SiO2?Fe2O3. In these systems the presence of different crystalline phases, such as ZnO, γ?Fe2O3, Fe3O4, ZnFe2O4 and Fe3BO5, was detected. The crystallization of α?Zn2SiO4 in the system ZnO?B2O3?SiO2 was confirmed by X-ray diffraction and IR spectroscopy. The valence state and coordination of iron in Zn-borosilicate glasses were determined by57Fe Mössbauer spectroscopy.  相似文献   

16.
A horizontal packed-bed reactor with baffles (HPBR) and a continuously stirred tank reactor with intermittent paddle agitation have been shown to considerably reduce the CO2 entrapment when glucose is fermented with immobilized baker’s yeast in calcium alginate beads. Using high cell contents in the gel resulted in internal mass transfer hindrance. The highest productivity was obtained with the HPBR giving 29 g EtOH/Lh at an ethanol yield of 90%. The substrate used was 100 g/L glucose. Fermentation of lactose and deproteinized whey by coimmobilized baker’s yeast and |3-galactosidase resulted in much lower productivity-about 5 g EtOH/L.h because of the slow fermentation of galactose.  相似文献   

17.
In this study, Co3O4/SiO2 nanocomposites have been successfully synthesized by citrate–gel method by utilizing SiO2 matrix for Co3O4 embedment. Spectroscopy analyses confirm the formation of high crystalline Co3O4 nanoparticles; meanwhile, microscopy findings reveal that the Co3O4 nanoparticles are embedded in SiO2 matrix. Electrochemical properties of the Co3O4/SiO2 nanocomposites were carried out using cyclic voltammetry (CV), galvanostatic charge–discharge, and electrochemical impedance spectroscopy (EIS) in 5 M KOH electrolyte. The findings show that the charge storage of Co3O4/SiO2 nanocomposites is mainly due to the reversible redox reaction (pseudocapacitance). The highest specific capacitance of 1,143 F g ?1 could be achieved at a scan rate of 2.5 mV s?1 in the potential region between 0 and 0.6 V. Furthermore, high-capacitance retention (>92 %) after 900 continuous charge–discharge tests reveals the excellent stability of the nanocomposites. It is worth noting from the EIS measurements that the nanocomposites have low ESR value of 0.33 Ω. The results manifest that Co3O4/SiO2 nanocomposites are the promising electrode material for supercapacitor application.  相似文献   

18.
19.
Aerosilogel modified with hydroxylaluminum (=Al-OH) groups has been synthesized via the molecular layering procedure, and aerosilogel modified with aminopropylsilyl groups [≡Si(CH2)3NH2] has been prepared via chemisorption of (3-aminopropyl)triethoxysilane. The modified aerosilogel have been further used to prepare composite Nafion-containing electrolytes Nafion. Electrical conductivity of the produced materials has been studied by impedance spectroscopy. Chemical modification of the gel surface strongly affects proton conductivity of Nafion-containing composites.  相似文献   

20.
We have refined single crystals of Na2Ti6O13 through the X-ray Rietveld method. The synthesis of the Na2Ti6O13 was carried out by sol–gel method at 70 °C, and the obtained gel was heat treated at different temperatures. Through different analytical techniques such as X-ray Diffraction (XRD), Scanning Electronic Microscopy (SEM), Infrared Spectroscopy (FTIR), and Thermal Analysis (DTA/TGA), it was determined that Na2Ti6O13 can be prepared at low temperature (750 °C) by sol–gel method. The product crystallizes in rectangular shape micro-fibers, free of impurities. Rietveld refinement was performed using X-ray diffraction technique taking as basis a monoclinic cell with space group C2/m. The following refined parameters were obtained: a = 15.095(7) Å, b = 3.745(3) Å, c = 9.174(1) Å, β = 99.01. Additionally, Na2Ti6O13 was tested as photocatalysts on the degradation of methylene blue (MB) under UV light. The degradation reaction follows a first order reaction model with kinetic parameters k = 0.0089 min?1, and t 1/2 = 78 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号