首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comprehensive two-dimensional gas chromatography (GC x GC) can reveal information on the composition of a sample in a way that cannot be done by one-dimensional GC (1D-GC). GC x GC also offers much greater control of chromatographic selectivity based on molecular structure. However, in spite of more than 15 years of claims of the ability of GC x GC to resolve an overwhelmingly larger number of peaks than 1D-GC, and in spite of the theoretically proven potential of GC x GC to have an order of magnitude larger peak capacity than 1D-GC, the peak capacity of currently practiced GC x GC does not generally exceed the peak capacity attainable from 1D-GC with the same analysis time and the same minimal detectable concentration (MDC). The methodology for comparing the peak capacity of GC x GC to 1D-GC is described. The comparison of the performance of GC x GC to 1D-GC shows that the modulator is the key bottleneck limiting the performance of existing GC x GC. To realize the full potential of GC x GC, duration of injection from a modulator into the second-dimension column should be reduced by an order of magnitude or more. Use of powerful data analysis techniques such as peak deconvolution in both dimensions can further increase resolving power of GC x GC.  相似文献   

2.
By taking into consideration band broadening theory and using those results to select experimental conditions, and also by reducing the injection pulse width, peak capacity production (i.e., peak capacity per separation time) is substantially improved for one dimensional (1D-GC) and comprehensive two dimensional (GC×GC) gas chromatography. A theoretical framework for determining the optimal linear gas velocity (the linear gas velocity producing the minimum H), from experimental parameters provides an in-depth understanding of the potential for GC separations in the absence of extra-column band broadening. The extra-column band broadening is referred to herein as off-column band broadening since it is additional band broadening not due to the on-column separation processes. The theory provides the basis to experimentally evaluate and improve temperature programmed 1D-GC separations, but in order to do so with a commercial 1D-GC instrument platform, off-column band broadening from injection and detection needed to be significantly reduced. Specifically for injection, a resistively heated transfer line is coupled to a high-speed diaphragm valve to provide a suitable injection pulse width (referred to herein as modified injection). Additionally, flame ionization detection (FID) was modified to provide a data collection rate of 5kHz. The use of long, relatively narrow open tubular capillary columns and a 40°C/min programming rate were explored for 1D-GC, specifically a 40m, 180μm i.d. capillary column operated at or above the optimal average linear gas velocity. Injection using standard auto-injection with a 1:400 split resulted in an average peak width of ~1.5s, hence a peak capacity production of 40peaks/min. In contrast, use of modified injection produced ~500ms peak widths for 1D-GC, i.e., a peak capacity production of 120peaks/min (a 3-fold improvement over standard auto-injection). Implementation of modified injection resulted in retention time, peak width, peak height, and peak area average RSD%'s of 0.006, 0.8, 3.4, and 4.0%, respectively. Modified injection onto the first column of a GC×GC coupled with another high-speed valve injection onto the second column produced an instrument with high peak capacity production (500-800peaks/min), ~5-fold to 8-fold higher than typically reported for GC×GC.  相似文献   

3.
In this study, simultaneous deconvolution and reconstruction of peak profiles in the first ((1)D) and second dimension ((2)D) of comprehensive two-dimensional (2D) gas chromatography (GC×GC) is achieved on the basis of the property of this new type of instrumental data. First, selective information, where only one component contributes to the peak elution window of a given modulation event, is employed for stepwise stripping of each (2)D peak with the help of pure components corresponding to that compound from the neighbouring modulations. Simulation based on an exponentially modified Gaussian (EMG) model aids this process, where the EMG represents the envelope of all (2)D peaks for that compound. The peak parameters can be restricted by knowledge of the pure modulated (2)D GC peaks derived from the same primary compound, since it is modulated into several fractions during the trapping and re-focusing process of the cryogenic modulation system according to the modulation period. Next, relative areas of all pure (2)D components of that compound are considered for reconstruction of the primary peak. This strategy of exploitation of the additional information provided by the second dimension of separation allows effective deconvolution of GC×GC datasets. Non-linear least squares curve fitting (NLLSCF) allows the resolved 2D chromatograms to be recovered. Accurate acquisition of the pure profiles in both (1)D and (2)D aids quantification of compositions and prediction of 2D retention parameters, which are of interest for qualitative and quantitative analysis. The ratio between the sum of squares of deconvolution residual and original peak response (R(rr)) is employed as an effective index to evaluate the resolution results. In this work, simulated and experimental examples are used to develop and test the proposed approach. Satisfactory performance for these studies is validated by minimum and maximum R(rr) values of 1.34e-7% and 1.09e-2%; and 1.0e-3% and 3.0e-1% for deconvolution of (1)D and (2)D peaks, respectively. Results suggest that the present technique is suitable for GC×GC data processing.  相似文献   

4.
The two-dimensional (2D) data structure generated under a high resolution GC×GC system with a small number of samplings taken across the first dimension is evaluated for the purpose of the application of chemometric deconvolution methods. Chemometric techniques such as generalized rank annihilation method (GRAM) place high demands on the reproducibility of chromatographic experiments. For GRAM to be employed for GC×GC data interpretation, it is critical that the separation method provides data with a bilinear structure; the peak-shape and retention times on both columns must be reproducible. With a limited number of samplings across a 1D (first dimension) peak (e.g. four to six samplings) repeatability of the pattern of the modulated peaks (controlled by the modulation phase) becomes important in producing a bilinear data structure. Reproducibility of modulation phase can be affected by both reliability of the modulation period and reproducibility of the retention time of the peak on the first column (which arises from oven temperature and carrier flow rate stability). Evaluation of within-run and run-to-run retention time reproducibility (retention time uncertainty) on both columns, and modulation phase reproducibility using a modulated cryogenic system for a pair of overlapping components (fatty acid methyl esters) was undertaken. An investigation of the quality of data to permit quantification of each component by using GRAM deconvolution, was also conducted. Less than 4% run-to-run retention time uncertainty was obtained on column 1 and less than 9% run-to-run and within-run retention time uncertainty was obtained on column 2, where these R.S.D. measures are reported normalised to peak widths on each respective dimension. The R.S.D. of duplicate quantification results by GRAM ranged from 2 to 26% although the average quantification error using GRAM was less than 5%.  相似文献   

5.
Comprehensive two-dimensional gas chromatography (GCxGC) offers favourable resolution and sensitivity compared with conventional one-dimensional gas chromatography (1D-GC), as reported in many studies. These characteristics are of major interest when analytes are in trace concentration, and are present in complex mixtures, as is the case of polycyclic aromatic hydrocarbons (PAHs) in atmospheric particulate samples. Whilst GCxGC has been widely applied to identification of different types of analytes in several matrices, less seldom has it been used for quantification of these analytes. Although several quantitative methods have been proposed, they may be tedious and/or require considerable user development. Whereas quantification in 1D-GC is a routine and well-established procedure, in GCxGC, it is not so straightforward, especially where novel or untested procedures have yet to be incorporated into software packages. In the present study, it is proposed that a subset of the modulated peaks generated for each solute may be summed, based on the specific target ion mass of each compound present in a certified standard reference material (SRM) 1649a (urban dust). The ratio between a PAH and its corresponding deuterated (PAH-d) form showed that there is no statistical loss of sensitivity when this ratio is calculated based on whether the total sum of modulated peaks, or if only the two or the three most intense modulated peaks, are employed. Manual integration may be required, and here was found to give more acceptable values than automatic integration. Automated integration has been shown here to underestimate the modulated peak responses when low concentrations of PAHs were analyzed. Although for most PAHs good agreement with the certified values were observed, the analytical method needs to be further optimized for some of the other PAH, as can be see with those PAH with high variability in the range of urban dust analyzed.  相似文献   

6.
Kong H  Ye F  Lu X  Guo L  Tian J  Xu G 《Journal of chromatography. A》2005,1086(1-2):160-164
Comprehensive two-dimensional gas chromatography (GC x GC) has attracted much attention for the analysis of complex samples. Even with a large peak capacity in GC x GC, peak overlapping is often met. In this paper, a new method was developed to resolve overlapped peaks based on the mass conservation and the exponentially modified Gaussian (EMG) model. Linear relationships between the calculated sigma, tau of primary peaks with the corresponding retention time (tR) were obtained, and the correlation coefficients were over 0.99. Based on such relationships, the elution profile of each compound in overlapped peaks could be simulated, even for the peak never separated on the second-dimension. The proposed method has proven to offer more accurate peak area than the general data processing method.  相似文献   

7.
Comprehensive two-dimensional gas chromatography (GC x GC) analysis has the capability to resolve many more components of complex mixtures than traditional single column GC analysis. There is an increasing need to provide reliable identification of these separated components; time-of-flight mass spectrometry (TOFMS) is the most appropriate technology to achieve this task. Rather than require MS for all GC x GC separations, it is desirable to assign peak identities to specific peak positions in the GC x GC separation space, and this necessitates matching peak retentions in the two experiments - GC x GC-FID and GC x GC-TOFMS. The atmospheric vs. vacuum outlet conditions confound this task. It is shown here that by employing a supplementary gas supply, provided to a T-union between the column outlet and the MS interface, it is possible to generate 2D chromatograms for GC x GC-FID and GC x GC-TOFMS that are essentially exactly matched. There is no degradation in separation performance or efficiency in the second column in the system interfaced to the T-union. Since the GC x GC-FID experiment uses hydrogen for maximum efficiency, and GC x GC-TOFMS uses helium carrier, translation of (conditions/retentions) must account for the different viscosities of the carrier gases. Translation of conditions is based on well-known principles established in single column analysis. Tabulated data illustrate that retention reproducibility was of the order of better than 4 s for the average first dimension retention difference, and about 40 ms for the average second dimension retention difference when comparing GC x GC-FID and GC x GC-TOFMS results. This should provide considerable support for identification in routine GC x GC-FID analysis of specific sample types, once the peaks in 2D separation space have been assigned identities through GC x GC-TOFMS analysis.  相似文献   

8.
The practicability and potential of comprehensive two-dimensional gas chromatography (GC x GC) coupled to both conventional flame ionisation (FID) and time-of-flight mass spectrometric (TOF-MS) detection, were compared with those of conventional one-dimensional (1D) GC, with the determination of flavour compounds in butter as an application. For polar flavour compounds, which were collected from the aqueous fraction of butter by means of solid-phase extraction (SPE), it was found that GC x GC dramatically improves the overall separation. Consequently, quantification and preliminary identification based on the use of ordered structures, can be performed more reliably. The improvement effected by replacing 1D-GC by GC x GC is considerable also in the case of TOF-MS detection, as illustrated by the high match factors generally obtained during identification. GC x GC was also used successfully for the characterisation of volatile flavour compounds in the headspace of butter collected by solid-phase microextraction (SPME) and to study the effect of heat treatment on the composition of butter samples in more detail.  相似文献   

9.
The volatile composition of 20-year-old out-of-service creosote-treated railway wood sleepers was studied. The emitted volatile fraction was collected by means of dynamic purge-and-trap concentration at ambient temperature, and analyzed by comprehensive two-dimensional gas chromatography (GC x GC) hyphenated with mass spectrometric detection systems, using quadrupole (GC x GC/qMS) and time-of-flight (GC x GC/ToF-MS) mass analyzers and selective nitrogen-phosphorus detection (GC x GC-NPD). The analysis of mass spectrometry data and GC x GC retention time allowed the tentative identification of about 300 compounds based on spectrometric data and positioning of each compound in the GC x GC plot. Major important headspace components are polyaromatic hydrocarbons, phenols and benzene derivatives, hydrocarbons and heterocyclic compounds containing nitrogen, sulphur or oxygen atoms. Many of the reported compounds are listed as belonging to toxicological substance classes which have been related to harmful health effects. GC x GC provides greater speciation and evidence of composition heterogenicity of the sample than one-dimensional GC analysis, thus allowing to better demonstrate its potential toxicity. Data obtained by specific detection systems for N-heterocycles assisted mass data interpretation assignments. The enhanced separation power obtained after GC x GC compared to one-dimensional gas chromatography (1D-GC) together with spectral deconvolution and correlation with physical-chemical data, allowed the identification of complex isomer clusters, as demonstrated for alkylquinolines, and applied also to alkylphenols, alkylbenzenes and alkylnaphthalenes.  相似文献   

10.
The identification of compounds by using gas chromatography (GC) in samples with significant complexity comprising a range of isomeric species, where characterization is based on peak retention times and mass spectra, generates uncertainty for the analyst. This leads to identification errors. The most reliable way to confirm the identification of each compound is based on authentic standard co-injection, which in several cases is economically prohibitive, and often unachievable in the time available for analysis. Retention index procedures are important tools to minimize misidentification of compounds in conventional chromatography. The introduction of comprehensive two-dimensional GC (GC × GC) for analysis of complex samples was a decisive step to increase the analytical capacity of chromatographic techniques. For many samples, the chromatographic resolution increase leads to quantitative expansion in the number of peaks identified, compared with conventional GC analysis. Notwithstanding this improved resolution, limitations still persist in correct peak identification, which suggests the use of retention indices may assist in supporting component identification in this important technique. In this work, approaches to use of the retention index in GC × GC are discussed, based on an evaluation of the literature in this area. Interpretation of effective chain length data for fatty acid methyl esters in the first and second dimensions is presented.  相似文献   

11.
Coal is a non renewable fossil fuel, used mainly as a source of electrical energy and in the production of coke. It is subjected to thermal treatment, pyrolysis, which produces coke as a main product, in addition to a condensed liquid by-product, called tar. Tar is a complex mixture of organic compounds which contains different chemical classes, presenting aromatic and sulphur heterocyclic compounds. In general, identification of these compounds requires steps of isolation and fractionation, mainly due to co-elution of these compounds with polyaromatic hydrocarbons (PAH). The objective of this work is to characterize the sulphur compounds present in the coal tar obtained via pyrolysis, using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry detector (GC×GC/TOFMS). Coal samples from the State of Paraná, Brazil were subjected to laboratorial scale pyrolysis. Several experimental conditions were tested, such as sample weight (5, 10 and 15g), heating ramp (10, 25 and 100°C/min) and final temperature (500, 700 and 900°C). Samples were analyzed by one dimensional gas chromatography (1D-GC) coupled to a quadrupole mass spectrometry detector (GC/qMS) and two-dimensional gas chromatography with time-of-flight mass spectrometry detector (GC×GC/TOFMS). The higher amount of sulphur compounds was obtained at a final temperature of 700°C and a heating ramp of 100°C/min. The main classes observed in the color plot were thiophenes, benzothiophenes and alkylated dibenzothiophenes. GC×GC/TOFMS allowed the identification of the greater number of compounds and the separation of several sulphur compounds from one another. Moreover, separation of sulphur compounds from polyaromatic hydrocarbons and phenols was achieved, which was not possible by 1D-GC. Comparing GC×GC/TOFMS and 1D-GC (SIM mode) also showed that 1D-GC, one of the most employed quantification tools for sulphur compounds, can be misleading for detection, identification and quantification, as the number of isomers of sulphur compounds found was greater than theoretically possible.  相似文献   

12.
Lu X  Kong H  Li H  Ma C  Tian J  Xu G 《Journal of chromatography. A》2005,1086(1-2):175-184
A model is developed for predicting the resolution of interested component pair and calculating the optimum temperature programming condition in the comprehensive two-dimensional gas chromatography (GC x GC). Based on at least three isothermal runs, retention times and the peak widths at half-height on both dimensions are predicted for any kind of linear temperature-programmed run on the first dimension and isothermal runs on the second dimension. The calculation of the optimum temperature programming condition is based on the prediction of the resolution of "difficult-to-separate components" in a given mixture. The resolution of all the neighboring peaks on the first dimension is obtained by the predicted retention time and peak width on the first dimension, the resolution on the second dimension is calculated only for the adjacent components with un-enough resolution on the first dimension and eluted within a same modulation period on the second dimension. The optimum temperature programming condition is acquired when the resolutions of all components of interest by GC x GC separation meet the analytical requirement and the analysis time is the shortest. The validity of the model has been proven by using it to predict and optimize GC x GC temperature programming condition of an alkylpyridine mixture.  相似文献   

13.
Identifying compounds of interest for peaks in data generated by comprehensive two-dimensional gas chromatography (GC x GC) is a critical analytical task. Manually identifying compounds is tedious and time-consuming. An alternative is to use pattern matching. Pattern matching identifies compounds by matching previously observed patterns with known peaks to newly observed patterns with unidentified peaks. The fundamental difficulty of pattern matching comes from peak pattern distortions that are caused by differences in data acquisition conditions. This paper investigates peak pattern variations related to varying oven temperature ramp rate and inlet gas pressure and evaluates two types of affine transformations for matching peak patterns. The experimental results suggest that, over the experimental ranges, the changes in temperature ramp rate generate non-linear pattern variations and changes in gas pressure generate nearly linear pattern variations. The results indicate the affine transformations can largely remove the pattern variations and can be used for applications such as pattern matching and normalizing retention times to retention indices.  相似文献   

14.
The headspace compositions of 13 pepper and peppercorn samples of different species, colloquially also referred to as pepper, were analyzed, and more than 300 compounds were tentatively characterized by means of comprehensive two-dimensional gas chromatography in tandem with flame ionization detection, quadrupole mass spectrometric detection and time-of-flight mass spectrometric detection (GC x GC-FID, GC x GC/qMS and GC x GC/TOFMS, respectively). The analysis of volatile organic compounds (VOCs) was performed after solid-phase microextraction (SPME) using a 75-microm PDMS/DVB fibre. Fingerprint comparison between the three techniques permitted peaks to be assigned in the GC x GC-FID experiment based on the analogous MS analysis, taking into account retention shifts arising from method variations. When using GC x GC/TOFMS, about five times more peaks were identified than in GC x GC/qMS. Retention indices for all peaks were calculated in the bi-dimensional column set comprising of a 5% phenyl polysilphenylene-siloxane primary column and a polyethylene glycol second column. The spectra obtained by both mass detection techniques (qMS and TOFMS) give very similar results when spectral library searching was performed. The majority of the identified compounds eluted as pure components as a result of high-resolution GC x GC separations, which significantly reduces co-elution, and therefore increases the likelihood that pure spectra can be obtained. The differences between TOFMS and qMS (in fast scanning mode) spectra were generally small. Whilst spectral quality and relative ion ratios across a narrow peak (e.g. w(b) approximately 100-150 ms) do vary more for the fast peaks obtained in GC x GC/qMS operation, than with TOFMS, in general adequate spectral matching with the library can be achieved.  相似文献   

15.
16.
The potential and current limitations of comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC x GC-TOF-MS) for the analysis of very complex samples were studied with the separation of cigarette smoke as an example. Because of the large number of peaks in such a GC x GC chromatogram it was not possible to perform manual data processing. Instead, the GC-TOF-MS software was used to perform peak finding, deconvolution and library search in an automated fashion; this resulted in a peak table containing some 30000 peaks. Mass spectral match factors were used to evaluate the library search results. The additional use of retention indices and information from second-dimension retention times can substantially improve the identification. The combined separation power of the GC x GC-TOF-MS system and the deconvolution algorithm provide a system with a most impressive separation power.  相似文献   

17.
色谱与色谱/质谱法相结合分析热裂解汽油C9馏分   总被引:3,自引:0,他引:3  
王华  刘文民  徐媛  关亚风 《色谱》2006,24(6):615-618
采用毛细管气相色谱-氢火焰离子化检测器(CGC-FID)和气相色谱-质谱法(GC/MS)分析了热裂解汽油C9 馏分的组成。实验使用PONA毛细管气相色谱柱(100 m×0.25 mm i.d.×0.5 μm),根据烃类化合物在PONA柱上的保留规律,以正构烷烃标样保留值作为碳数分布依据,定量分析了裂解汽油C9 馏分中烃类化合物的碳数分布和单体烃含量;用GC/MS联用技术和CGC保留值定性法相结合对裂解汽油C9 馏分中相对含量大于0.2%的39种化合物进行了定性。  相似文献   

18.
Different cryogenic and a heated GC x GC modulator(s) were evaluated and compared for the analysis of high-boiling halogenated compounds. The cryogenic modulators investigated were: (i) the longitudinally modulated cryogenic system; (ii) the liquid-nitrogen-cooled jet modulator (KT2001); (iii) a dual-jet CO2 modulator (made in-house); (iv) a semi-rotating cryogenic modulator (made in-house) and (v) a CO2 loop modulator (KT2003); the heated modulator was the slotted heater system (sweeper). Each modulator was optimised with respect to analyte peak widths at half height in the second-dimension. n-Alkanes, chlorinated alkanes, polychlorinated biphenyls (PCBs) and fluorinated polycyclic aromatic hydrocarbons (F-PAHs) were used as test analytes. The flow rate of the coolant was found to be an important parameter, i.e. the flow rate of the gaseous nitrogen in the KT2001, and of the liquid CO2 in the other cryogenic modulators. For the slotted heater the stroke velocity and pause time were important parameters. This modulator had a limited application range in terms of temperature due to a necessary 100 degrees C difference between sweeper and oven temperature. All cryogenic modulators were found to be suitable for the GC x GC analysis of high-boiling compounds, but the CO2 modulators are to be preferred to the KT2001 due to a wider application range and slightly narrower peaks. As regards the performance of three commercially available electron-capture detectors (ECDs), the aim was to obtain narrow peak widths in GC x GC, i.e. to avoid band broadening caused by the cell volume. The most important parameters were the flow rate of the make-up gas and the detector temperature which both should be as high as possible. Comparison of analyte peak widths obtained with ECD mode and flame ionisation detection (FID) showed that all ECDs exhibited band broadening compared to the FID. The narrowest peaks were obtained with the Agilent micro-ECD, which has a cell volume of only 150 microl.  相似文献   

19.
Temperature requirements for trapping and release of compounds in a cryogenic gas loop-type GC x GC modulator were determined. Maximum trapping temperatures on the uncoated, deactivated modulator capillary were determined for compounds from C4 (bp -0.5 degrees C) to C40 (bp 522 degrees C). The liquid-nitrogen cooled gas flow rate was reduced from a high of 15.5 to 1.5 SLPM over the range to achieve the required trapping temperature. Excessive cold jet flow rates caused irreversible trapping and peak tailing for semi-volatile compounds above C26. Alternate cold jet coolants were investigated. An ice water-cooled jet was able to trap compounds with boiling points from C18 (bp 316 degrees C) to C40 and a room temperature air-cooled jet was able to trap compounds from C20 (bp 344 degrees C) to C40. The hot jet produced launch temperatures approximately 40 degrees C hotter than the elution temperature with heating time constants of 8 to 27 ms. Modulated compound peaks were symmetrical with half-height peak widths of 43 to 56 ms for compounds with little second column retention, and 70 to 75 ms for compounds with more second column retention. The liquid nitrogen-cooled loop modulator with gas flow programming was used to produce a GC x GC chromatogram for a crude oil that contained compounds from C7 to C47.  相似文献   

20.
The chemical composition of the needles of P. pinea, P. pinaster, P. halepensis, P. nigra, P. brutia, P. patula, P. radiata, P. taeda, P. elliotti, P. kesiya, P. sylvestris and P. eldarica was investigated. Headspace solid-phase microextraction and steam distillation extraction were used to collect the volatile fractions. Samples were analyzed using one-dimensional gas chromatography (1D-GC) and comprehensive two-dimensional gas chromatography (GC × GC) associated with a quadrupole and a time-of-flight mass detectors. Results showed that the analytical capabilities of 1D-GC are partially limited by the separation power of the columns. The higher sensibility and the absence of peak skewing of the time-of-flight mass analyzer, with the use of automated peak finding and deconvolution algorithms, allowed for the detection of trace components with qualitative full spectra and the extraction of true mass spectra from coeluting compounds, promoting their reliable identification and thus significantly improving results obtained by 1D-GC/MS, when using a quadrupole mass analyzer. The use of GC × GC resulted in enhanced separation efficiency and increased signal to noise ratio (sensitivity) of the analytes, maximizing mass spectra quality and improving compound detection and identification. This work shows the use of 1D-GC/ToFMS for the analysis of pine needles volatiles, achieving the detection of 177 compounds, that is more than twice the number previously identified by standard 1D-GC/MS. The analysis by GC × GC for the same sample allowed the detection of 212 compounds. The enantioselective GC × GC analysis performed for all the Pinus spp. under study achieved the detection of 422 different compounds. Cross-over phenomena according to operational conditions are highlighted and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号