首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cholesterol measurements are of vital clinical importance and reliable reference materials are essential for method validation. Gas chromatography with mass spectrometry (GC/MS) is usually used for the high accuracy analysis of cholesterol by isotope dilution. A certified reference material for cholesterol content in human serum was analysed by isotope dilution utilising GC/MS and liquid chromatography mass spectrometry (LC/MS). The use of LC/MS avoided the need for a derivatisation step. Both LC/MS and GC/MS produced results on the measurement of cholesterol that agreed within 0.5% of the certified value. Moreover, the precision obtained for ratio measurement using both techniques are comparable and lead to relative expanded standard uncertainties (with a coverage factor of 2) varying between 0.2 and 0.5%.  相似文献   

2.
Summary Accurate analysis results are a common problem in trace and micro determinations of elements, as found in particular in a number of interlaboratory studies. The difference between precision and accuracy of an analysis is shown in this review and a possible hierarchy of analytical methods is given. Isotope dilution mass spectrometry is the most accurate method of all mass spectrometric techniques. Possible element analyses by isotope dilution mass spectrometry are discussed using different ionization methods in the mass spectrometer (thermal ionization, spark source mass spectrometry, electron impact ionization, ICP and MIP, field desorption mass spectrometry). If MIP-MS and spark source mass spectrometry are applied, the difference between analysis results where the isotope dilution technique is and is not used is shown. The precision and accuracy of spark source mass spectrometry increases significantly when the isotope dilution method is applied. Accurate results by mass spectrometry are shown in comparison with certified values of standard reference materials using food samples, biological samples, geological samples, nuclear reactor materials, metals, and samples from the environment as examples. Possible sources of error by isotope dilution mass spectrometry are discussed. In contrast to the analysis of metal traces, only a few alternative methods can be applied to the trace analysis of non-metals and their anion forming compounds. In this case the production of negative thermal ions in a mass spectrometer in connection with the isotope dilution technique is a useful tool for accurate anion and non-metal analyses.
Hohe Richtigkeit in der Elementanalyse durch Massenspektrometrie
Zusammenfassung Richtige Analysenergebnisse sind ein allgemeines Problem bei der Spuren- und Mikrobestimmung der Elemente, wie sich vor allem immer wieder im Rahmen von Ringanalysen herausstellt. Der Unterschied zwischen Reproduzierbarkeit und Richtigkeit eines Analysenergebnisses wird in diesem Übersichtsartikel aufgezeigt und eine mögliche Hierarchie von Methoden aufgestellt. Im Bereich der Massenspektrometrie gilt die Isotopenverdünnungsanalyse als diejenige Methode, mit der die richtigsten Ergebnisse erhalten werden können. Für die Anwendung verschiedener Ionisationsmethoden im Massenspektrometer (Thermionisation, Funkenquellen-Massenspektrometrie, Elektronenstoßionisation, ICP und MIP, Felddesorptions-Massenspektrometrie) werden die Möglichkeiten der Elementanalyse durch die Isotopenverdünnungstechnik diskutiert. Bei Verwendung der MIP-MS und der Funkenquellen-Massenspektrometrie wird auch der Unterschied zwischen Ergebnissen, die mit und ohne Isotopenverdünnungsanalyse erhalten werden, aufgezeigt. Dabei ergibt sich für die Funkenquellen-Massenspektrometrie eine wesentliche Verbesserung der Analysenergebnisse, wenn die Isotopenverdünnungsmethode angewendet wird. Anhand von Beispielen (Lebensmittelproben, biologische Proben, geologische und kerntechnische Proben, Metalle, Umweltproben) wird die Richtigkeit der massenspektrometrischen Ergebnisse verdeutlicht, wobei häufig ein Vergleich zu zertifizierten Werten von Standard-Referenzmaterialien gegeben wird. Mögliche Fehlerquellen der Isotopenverdünnungsanalyse werden diskutiert. Da bisher zur Bestimmung von Anionen- und Nichtmetallspuren nur vergleichsweise wenige Verfahren zur Verfügung stehen, hat sich hier die Erzeugung negativer Thermionen in einem Massenspektrometer bei gleichzeitiger Anwendung der Isotopenverdünnungsanalyse bewährt.
  相似文献   

3.
An isotope dilution liquid chromatography/tandem mass spectrometry is proposed as a reference method to determine the level of tyrosine in human serum. The advantages of this method include simple sample preparation without derivatization, the selective detection of compounds of interest in complex matrices, and the use of an isotopically labeled analogue as an internal standard. Tyrosine and its isotopically labeled analogue were monitored at a transfer m/z of 182.1/136.2 and 188.1/142.2, corresponding to [M+H]+/[M+H-HCOOH]+ in a multiple reaction monitoring mode. The expanded uncertainty for the measurement of tyrosine in the serum was approximately 0.95% within a 95% confidence level. For the verification of this method, a standard reference material with a certified value was analyzed. The analyzed result was in good agreement with the certified value. The isotope dilution liquid chromatography/tandem mass spectrometry result of the human serum was also compared with results obtained from clinical laboratories, and showed inconsistent results. These inconsistent results suggest that standards certified by the proposed reference method are required in order to improve measurement reliability in clinical fields.  相似文献   

4.
An inductively coupled plasma isotope dilution mass spectrometric (ICP-IDMS) method was developed as a suitable method - with respect to its sensitivity, precision, accuracy, and time-consumption - for the analysis of toxic heavy metal traces (Pb, Cd, Cr, and Hg) in polyolefins. Results for Pb, Cd, and Cr were compared with those obtained by thermal ionization isotope dilution mass spectrometry (TI-IDMS), which was used as a reference method. Because of its high first ionization potential and its high volatility mercury could not be determined by TI-IDMS. A multi-element spike solution, containing isotopically enriched 206Pb, 116Cd, 53Cr, and 201Hg, was used for the isotope dilution step. Decomposition of the polyolefin samples was carried out with concentrated HNO3 at temperatures of about 300 degrees C in a high pressure asher (HPA). This procedure decomposes polyolefins completely and allows isotopic equilibration between sample and spike isotopes. Detection limits of 16 ng/g, 5 ng/g, 164 ng/g, and 9 ng/g were obtained for Pb, Cd, Cr, and Hg by ICP-IDMS using only sample weights of 0.25 g. In different commercially available polyethylene samples heavy metal concentrations in the range of < 5 ng/g to 4 x 10(3) ng/g were analyzed. Both mass spectrometric methods were applied within the EU project "Polymeric Elemental Reference Material (PERM)" for the certification of two polyethylene reference materials. The ICP-IDMS results agreed very well with those of TI-IDMS which demonstrates the accuracy of the ICP-IDMS method also suitable for routine analyses.  相似文献   

5.
The selection of an appropriate isotope dilution mass spectrometry technique for the practical application of this potentially primary method of analysis is highly important. The NARL approach for the application of the exact matching double isotope dilution mass spectrometry technique developed by Henrion is presented. NARL's approach utilises exact matching to minimise the effect of measurement biases within the method but also includes the thorough examination of all other biasing factors. The approach has been successfully tested in international CCQM intercomparisons with other national metrology institutes.  相似文献   

6.
介绍了同位素稀释法的原理,对同位素稀释法的浓度计算公式进行了推导。着重论述了同位素稀释法电感耦合等离子体质谱分析过程中影响同位素比值测定结果准确度和精确度的主要因素及其解决办法。综述了同位素稀释法电感耦合等离子体质谱近几年来在材料、生物以及环境样品分析中的应用。  相似文献   

7.
This paper presents results obtained for in vivo endogenous and exogenous 7-methylguanine (7-MG) analyzed using a method incorporating gas chromatography with electron-capture negative chemical ionization mass spectrometry and isotope dilution (GC/EC-ID-MS). 13C4-Labeled 7-MG was synthesized to serve as an internal standard to improve accuracy of quantitation, and was used to analyze 7-MG in livers of control mice and dacarbazine-treated mice. The results confirm that 7-MG in tissue DNA can be measured using this GC/EC-ID-MS method with excellent sensitivity and specificity. Administration of 0, 30, and 60 mg/kg dacarbazine to mice led to dose-dependent increases in the formation of 7-MG. The results indicate that this method could be applied to the analysis of endogenous and exogenous 7-MG in human tissues for future molecular epidemiology studies on potential health effects caused by methylating agents.  相似文献   

8.
Isotope ratio monitoring combined with n((13)C)/n((12)C) isotope dilution mass spectrometry (IRM/IDMS) provides results of low uncertainty of the order of 0.1% if it is applied to the analysis of simple mixtures as found in organic chemistry, even if only low (13)C spike additives to the sample are used. If the method is applied to the analysis of systems that require large-scale sample preparation prior to the measurement, such as the determination of glucose in serum, the results obtained exhibit a higher uncertainty that is comparable to that of the conventional gas chromatography/isotope dilution mass spectrometry (GC/IDMS) method. The reason for this observation is that the small contribution that the IRM/IDMS method makes to the uncertainty budget of the result is superimposed on a large contribution due to the sample preparation. It appears therefore that the IRM/IDMS method has no advantage over the conventional GC/IDMS method. However, if a series of measurements is carried out, and if a suitable experimental design is chosen, the IRM/IDMS method can provide valuable additional information. The influence of sample preparation on each individual result can be quantified as its deviation from the average value of all results of the series. From these data conclusions can be drawn for an improvement in sample preparation.  相似文献   

9.
Half-life of241Pu is of great importance in nuclear technology. In view of large variation in the values (13–15 y) reported till 1974 in literature, efforts have been made in different laboratories to determine this half-life with high precision and accuracy. In our laboratory, it has been determined by different methods which may be classified in two categories, viz. (1) parent decay method, and (2) daughter growth method. In the parent decay method, change in isotope ratios241Pu/239Pu,241Pu/240Pu and241Pu/242Pu was studied periodically by a thermal ionization mass spectrometer. Single as well as double ratio method was used to calculate the half-life. In the daughter growth method, the half-life was obtained in four independent ways. These were (1) alpha spectrometry taking239Pu and242Pu separately as reference isotopes and studying periodically the increase in alpha activity ratio, (2) alpha proportional counting for observing periodically the change in total alpha activity, (3) isotope dilution alpha spectrometry using243Am as a spike, (4) isotope dilution mass spectrometry using243Am as a spike. In all these methods, synthetic mixtures were prepared for achieving high precision and accuracy in different measurements. Based on the results obtained in this laboratory and the values reported by other laboratories, a half-life value of 14.4±0.1 y is recommended. The paper reviews the past history, puts forth the present status, highlights the current trends for studying the effect of chemical composition of plutonium on the half-life of241Pu and presents the future requirements for achieving higher accuracy in the half-life of241Pu.  相似文献   

10.
A method is described for the simultaneous determination of planar chlorobiphenyls and dioxins in milk using isotope dilution and gas chromatography—high-resolution mass spectrometry (GC-MS). The method is based on gel permeation chromatography, alumina clean-up and carbon chromatography and is highly automated, making a high sample throughput possible. Data on recovery, accuracy and reproducibility of results obtained with quality control samples are presented. Data for both dioxins and planar chlorbiphenyls from the analysis of samples of Dutch milk from several areas in the Netherlands are also presented. Possible interference of the chlorobiphenyls in the determination of the dioxins in the GC-MS method is discussed.  相似文献   

11.
Isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) was applied to the certification of Pb in four levels of NIST blood SRM, 955a. This standard reference material (SRM) represents a significant improvement over the previous blood reference material and will greatly aid method development. The lowest level, 47.76 ng/g Pb was determined with analysis uncertainty (95% CI, ID-ICP-MS uncertainties) of less than 1% and the highest level, 517.9 ng/g Pb to 0.3%. Uncertainty in the lowest level was due to sample inhomogeneity and variability in the analytical blank as the RSD on ratio measurements was typically better than 0.2%. Properly applied isotope dilution coupled with careful isotope ratio measurements on the ICP-MS offers precision and accuracy for blood Pb analyses beyond what is currently obtainable with routine methods.  相似文献   

12.
During the development of isotope dilution-liquid chromatography/mass spectrometry (ID-LC/MS) for tocopherol analysis in infant formula, biased measurement results were observed when deuterium-labeled tocopherols were used as internal standards. It turned out that the biases came from intermolecular H/D exchange and intramolecular H/D scrambling of internal standards in sample preparation processes. Degrees of H/D exchange and scrambling showed considerable dependence on sample matrix. Standard addition-isotope dilution mass spectrometry (SA-IDMS) based on LC/MS was developed in this study to overcome the shortcomings of using deuterium-labeled internal standards while the inherent advantage of isotope dilution techniques is utilized for the accurate recovery correction in sample preparation processes. Details of experimental scheme, calculation equation, and uncertainty evaluation scheme are described in this article. The proposed SA-IDMS method was applied to several infant formula samples to test its validity. The method was proven to have a higher-order metrological quality with providing very accurate and precise measurement results.  相似文献   

13.
Accurate quantitation has been demonstrated on many different types of mass spectrometer. However, quantitative applications of Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) have been limited. In this study, the quantitative potential of FTICRMS has been investigated using an exact matching isotope dilution method for the determination of creatinine in serum. Creatinine is an important clinical biomarker and its measurement is used as an assessment of renal function. The quantitation of creatinine was selected because a high-accuracy high-performance liquid chromatography/mass spectrometry (HPLC/MS) determination using a triple quadrupole mass spectrometer has already been successfully developed in-house. Therefore, a direct comparison of the quantitative capability of FTICRMS could be made against an established method. The accuracy of the quantitation of creatinine was found to be equivalent to that obtained using LC/MS. However, the expanded measurement uncertainty (k = 2) was larger, at 6%, when using FTICRMS compared with 1% when using HPLC/MS with the triple quadrupole mass spectrometer.  相似文献   

14.
A review of the well-established and novel analytical methods in mass spectrometry and chromatography-mass spectrometry is presented. General information about the methods is given and their distribution over the fields of analysis and mass spectrometric methods is considered. The classification and validation (certification) of the methods is discussed and their necessary characteristics are specified. The identification criteria contained in the methods and isotope dilution method providing the most precise and accurate results of quantitative analysis are considered. Various characteristics of errors (uncertainty) used in analytical methods are presented.  相似文献   

15.
Zirconium trace analyses play an important role for polyolefins produced by modern catalytic processes with zirconium metallocenes. A reliable and fast routine testing method by inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) was therefore developed, which allows the determination of zirconium in polymers down to the low ng/g level. With respect to its precision, accuracy, and time-consumption this method is suitable for routine testing of production processes. A spike solution, enriched in the stable isotope 91Zr, was prepared and used for the isotope dilution procedure, which has the advantage of being an internal “one point” calibration method. The polyolefin samples were dissolved by microwave assisted digestion with a mixture of concentrated HNO3/HF.  相似文献   

16.
应用同位素稀释电感耦合等离子体质谱(ID—ICP—MS)对环境和生物样品茶叶、湖沉积物和人发标准物质中的镉进行测定研究。对电感耦合等离子体质谱(ICP—MS)的工作条件和参数进行了最优化。讨论了多原子离子和同量异位素对镉同位素比值的影响,通过天然镉标准溶液对质量歧视进行了校正,并优化同位素稀释剂的加入量。将该方法应用于茶叶、人发和沉积物标准物质的测定。  相似文献   

17.
Swart C  Rienitz O  Schiel D 《Talanta》2011,83(5):151-1551
An alternative post column online double isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) method was developed. The resulting equation allows a straightforward calculation of the mass concentration of the analyte in the sample from the measured isotope ratio chromatogram. The use of a balance to determine and monitor the mass flow of the spike and a solution of the species under investigation as the reference are the two core components of this new method. Changes in the viscosity of the system eluent-analyte-spike will not affect the results due to the direct determination of the mass flow rate. The use of the species under investigation as the reference makes the method independent of the injected volume. To simplify matters, the integration of the isotope ratio chromatogram was done with Excel using Simpson's rule instead of sophisticated programs for transformation and integration. The advantages of the new approach were demonstrated with the help of the determination of selenomethionine in the selenized yeast reference material SELM-1 with liquid chromatography coupled to ICP-MS (HPLC ID-ICP-MS) applying the new online double IDMS method.  相似文献   

18.
Within the National Metrology Institutes (NMIs) and designated laboratories, an interlaboratory comparison, CCQM-P107, was conducted to verify the degree of international comparability concerning the results of purity analysis. The mass fractions of Ag, Bi, Cd, Cr, Ni, Tl at the lower mg/kg-level in a high purity zinc material were determined, but the real measurand in metrological sense was the sum of the six mass fractions. Homogeneity was investigated by glow discharge mass spectrometry, reference values were obtained using isotope dilution mass spectrometry. Six NMIs participated, contributing eight independent data sets. The agreement amongst the results of the participants, their median and the agreement with the reference values were usually excellent and in almost all cases below the target uncertainty of 30% relative. In this manner, the accuracy of results and the comparability between the participants was demonstrated to be established.  相似文献   

19.
The isotope dilution method is characterized by the use of appropiately labelled standard compounds in conjunction with mass spectrometry coupled to chromatographic systems. Although the isotope dilution method seems to be a simple procedure, some quality criteria for sample preparation, measurement and quantification have to be considered. Furthermore, archiving and documentation of analysis data as well as the use of reference materials to validate the analysis method are important with regard to European standard regulations for quality assurance. In view of this background and the increasing application tendency to environmental problems, essential quality critera for the isotope dilution method are presented and discussed, with special respect to sample extraction, separation performance and sensitivity. Also the quantification procedures are summarized.  相似文献   

20.
An inductively coupled plasma isotope dilution mass spectrometric (ICP-IDMS) method was developed as a suitable method – with respect to its sensitivity, precision, accuracy, and time-consumption – for the analysis of toxic heavy metal traces (Pb, Cd, Cr, and Hg) in polyolefins. Results for Pb, Cd, and Cr were compared with those obtained by thermal ionization isotope dilution mass spectrometry (TI-IDMS), which was used as a reference method. Because of its high first ionization potential and its high volatility mercury could not be determined by TI-IDMS. A multi-element spike solution, containing isotopically enriched 206Pb, 116Cd, 53Cr, and 201Hg, was used for the isotope dilution step. Decomposition of the polyolefin samples was carried out with concentrated HNO3 at temperatures of about 300?°C in a high pressure asher (HPA). This procedure decomposes polyolefins completely and allows isotopic equilibration between sample and spike isotopes. Detection limits of 16 ng/g, 5 ng/g, 164 ng/g, and 9 ng/g were obtained for Pb, Cd, Cr, and Hg by ICP-IDMS using only sample weights of 0.25 g. In different commercially available polyethylene samples heavy metal concentrations in the range of < 5 ng/g to 4 × 103 ng/g were analyzed. Both mass spectrometric methods were applied within the EU project “Polymeric Elemental Reference Material (PERM)” for the certification of two polyethylene reference materials. The ICP-IDMS results agreed very well with those of TI-IDMS which demonstrates the accuracy of the ICP-IDMS method also suitable for routine analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号