首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Capacitively coupled contactless conductivity detection (C4D) has appeared as a powerful technique for the detection of compounds lacking chromogenic or fluorogenic group. Since our last review (Biomedical Chromatography 2014; 28 : 1502–1506) several new capillary electrophoresis (CE)‐C4D methods have been reported. This review provides an update of the most recent utilization of CE‐C4D in the field of pharmaceutical, biomedical and food analysis covering the period from February 2014 to October 2016. The use of CE with C4D in the pharmaceutical field has been shown in many papers. Examples illustrate the applicability of CE‐C4D in the fields of pharmaceutical, biomedical and food analysis. Finally, general conclusions and perspectives are provided.  相似文献   

2.
Conductivity detection, which is universal in capillary electrophoresis (CE), has received considerable attention, since the introduction of the axial capacitively coupled contactless detector C4D in 1998. This detector is made of two electrodes which are placed cylindrically around the CE capillary and connected to the AC oscillator. The distance between the electrodes is the detection gap. In this review, applications of CE and MCE with C4D in pharmaceutical and biological analysis are presented.  相似文献   

3.
Paracetamol, caffeine and ibuprofen are found in over‐the‐counter pharmaceutical formulations. In this work, we propose two new methods for simultaneous determination of paracetamol, caffeine and ibuprofen in pharmaceutical formulations. One method is based on high‐performance liquid chromatography with diode‐array detection and the other on capillary electrophoresis with capacitively coupled contactless conductivity detection. The separation by high‐performance liquid chromatography with diode‐array detection was achieved on a C18 column (250×4.6 mm2, 5 μm) with a gradient mobile phase comprising 20–100% acetonitrile in 40 mmol L?1 phosphate buffer pH 7.0. The separation by capillary electrophoresis with capacitively coupled contactless conductivity detection was achieved on a fused‐silica capillary (40 cm length, 50 μm i.d.) using 10 mmol L?1 3,4‐dimethoxycinnamate and 10 mmol L?1 β‐alanine with pH adjustment to 10.4 with lithium hydroxide as background electrolyte. The determination of all three pharmaceuticals was carried out in 9.6 min by liquid chromatography and in 2.2 min by capillary electrophoresis. Detection limits for caffeine, paracetamol and ibuprofen were 4.4, 0.7, and 3.4 μmol L?1 by liquid chromatography and 39, 32, and 49 μmol L?1 by capillary electrophoresis, respectively. Recovery values for spiked samples were between 92–107% for both proposed methods.  相似文献   

4.
In this work, a method for simultaneous determination of amfepramone, fenproporex, sibutramine and fluoxetine was developed by capillary zone electrophoresis with capacitively coupled contactless conductivity detection (C4D) using a homemade capillary electrophoretic system. The optimized conditions for the separation of the pharmaceuticals by CZE were as follows: 50 mmol L− 1 phosphate buffer (pH 5.0) in 50/50 (v/v) mixture of water/acetonitrile as the working electrolyte, 15 kV separation voltage, 25 °C separation temperature, hydrodynamic injection by gravity using 20 cm injection height and 60 s injection time. The detection by C4D was carried out by using a homemade detector, which employs a sinusoidal wave generator operating at 600 kHz frequency and 2 Vpp wave amplitude. The optimized and validated CZE-C4D method was applied for the determination of the studied pharmaceuticals as adulterants in phytotherapeutic formulations commercialized in Brazil for slimming purposes.  相似文献   

5.
Isotachophoresis (ITP) has long been used alone but also as a preconcentration technique for capillary electrophoresis (CE). Unfortunately, up to now, its application is restricted to relatively strong acids and bases as either the degree of (de)protonation is too low or the water dissociation is too high, evoking zone electrophoresis. With the comprehensive ITP analysis of all 20 proteinogenic amino acids as model analytes, we, here, show that non–aqueous ITP using dimethylsulfoxide as a solvent solves this ITP shortcoming. Dimethylsulfoxide changes the pH regime of analytes and electrolytes but, more importantly, strongly reduces the proton mobility by prohibiting hydrogen bonds and thus, the so-called Zundel–Eigen–Zundel electrical conduction mechanism of flipping hydrogen bonds. The effects are demonstrated in an electrolyte system with taurine or H+ as terminator, and imidazole as leader together with strong acids such as oxalic and even trifluoroacetic acid as counterions, both impossible to use in aqueous solution. Mass spectrometric as well as capacitively coupled contactless conductivity detection (C4D) are used to follow the ITP processes. To demonstrate the preconcentration capabilities of ITP in a two-dimensional set-up, we, here, also demonstrate that our non-aqueous ITP method can be combined with capillary electrophoresis–mass spectrometry in a column-coupling system using a hybrid approach of capillaries coupled to a microfluidic interface. For this, C4D was optimized for on-chip detection with the electrodes aligned on top of a thin glass lid of the microfluidic chip.  相似文献   

6.
Summary A capillary zone electrophoresis method has been developed for the determination of dextromethorphan and its metabolite, dextrorphan, in urine. A linear relationship was observed between the peak area and the concentration of both dextromethorphan and dextrorphan within the range of 490 ng mL–1 to 500 g mL–1 with a correlation coefficient of greater than 0.9999. The limit of detection was 80 ng mL–1 for both compounds. The inter-day coefficients of variation for the concentrations of 2.5 g mL–1 and 50 g mL–1 were 6.2% and 4.1% for dextromethorphan, and 5.6% and 2.8% for dextrorphan (n=15). The method could be applied directly to the determination of dextromethorphan and dextrorphan in human urine without any sample pretreatment for the elimination of interfering compounds as is required in published highperformance liquid chromatography and gas chromatography methods. Using dextromethorphan as a probe of the debrisoquin-oxidation metabolic phenotype, the 44 healthy volunteers were phenotyped after oral administration of a 15 mg dose using both this capillary electrophoresis method and a high-performance liquid chromatography assay from the literature. Good agreement was found between the two methods.  相似文献   

7.
《Electrophoresis》2018,39(7):1014-1020
A simple and rapid capillary electrophoresis method with capacitively coupled contactless conductivity detection (CE‐C4D) for the simultaneous determination of inorganic and organic anions in liquid product obtained from the hydrothermal treatment of biomass residues is presented. Under the optimal analytical conditions, limits of detection ranged from 1.8 to 9.4 μM for most target solutes and 53 μM for citrate. Relative standard deviations were below 0.5% for migration times and within 0.6–6.5% for peak areas for all solutes. The proposed method was successfully applied for the rapid determination and screening of inorganic and organic anions in liquid product produced following differing hydrothermal treatment temperatures for banana and pineapple biomass, and the contribution of organic acid formation to acidity in the liquid was evaluated. CE‐C4D could be a suitable method for the optimization or tailoring of HTT conditions for desired liquid product composition, and additionally for determination of the best variety(s) of biomass to use in such processes.  相似文献   

8.
In this article, optimization of BGE for simultaneous separation of inorganic ions, organic acids, and glutathione using dual C4D‐LIF detection in capillary electrophoresis is presented. The optimized BGE consisted of 30 mM 2‐[4‐(2‐hydroxyethyl)piperazin‐1‐yl]ethanesulfonic acid, 15 mM 2‐amino‐2‐hydroxymethyl‐propane‐1,3‐diol, and 2 mM 18‐crown‐6 at pH 7.2 and allowed simultaneous separation of ten inorganic anions and cations, three organic acids and glutathione in 20 min. The samples were injected hydrodynamically from both capillary ends using the double‐opposite end injection principle. Sensitive detection of anions, cations, and organic acids with micromolar LODs using C4D and simultaneously glutathione with nanomolar LODs using LIF was achieved in a single run. The developed BGE may be useful in analyses of biological samples containing analytes with differing concentrations of several orders of magnitude that is not possible with single detection mode.  相似文献   

9.
Capillary zone electrophoresis coupled with a capacitively coupled contactless conductivity detector (CE‐C4D) has been employed for the determination of atenolol and amiloride in pharmaceutical formulations. Acetic acid (150 mm ) was used as background electrolyte. The influence of several factors (detector excitation voltage and frequency, buffer concentration, applied voltage, capillary temperature and injection time) was studied. Non‐UV‐absorbing L‐valine was used as internal standard; the analytes were all separated in less than 7 min. The separation was carried out in normal polarity mode at 28°C, 25 kV and using hydrodynamic injection (25 s). The separation was effected in an uncoated fused‐silica capillary (75 μm, i.d. × 52 cm). The CE‐C4D method was validated with respect to linearity, limit of detection and quantification, accuracy, precision and selectivity. Calibration curves were linear over the range 5–250 μg/mL for the studied analytes. The relative standard deviations of intra‐ and inter‐day migration times and corrected peak areas were less than 6.0%. The method showed good precision and accuracy and was successfully applied to the simultaneous determination of atenolol and amiloride in different pharmaceutical tablet formulations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The publications concerning capacitively coupled contactless conductivity detection for the 2‐year period from mid‐2016 to mid‐2018 are covered in this update to the earlier reviews of the series. Relatively few reports on fundamental investigations or new designs have appeared in the literature in this time interval, but the development of new applications with the detection method has continued strongly. Most often, contactless conductivity measurements have been employed for the detection of inorganic or small organic ions in conventional capillary electrophoresis, less often in microchip electrophoresis. A number of other uses, such as detection in chromatography or the gauging of bubbles in streams have also been reported.  相似文献   

11.
Liu S  Pu Q  Gao L  Lu J 《Talanta》2006,70(3):644-650
We describe in this report an economic approach to construct a multiplexed capillary electrophoresis (CE) system with optic-fiber UV detection. To demonstrate the feasibility of this approach, a seven-lane CE setup is built. The system has a background noise of ∼10−5 absorbance unit, a limit of detection of 3-4 μM for uracil at 254 nm, and a linear dynamic range of 2.5 orders of magnitude. The apparatus consists of three major components: a UV light source, a photodiode array (PDA) and optical module assembly, and a computer. Compared to the recently reported 96-lane capillary electrophoresis system with UV-vis absorbance detection, the cost of goods is reduced by more than 10-fold, and the noise level is improved by 2 to 3 folds. Parallel CE separations of a protein mixture have been performed on this apparatus, and reproducible and high resolution separation results have been obtained. Detailed construction and characterization of the system have also been discussed.  相似文献   

12.
In this work, a capillary electrophoresis (CE) procedure was developed for the simultaneous determination of a pharmaceutical drug and its counter-ion, namely labetalol hydrochloride. For this purpose, an uncoated fused-silica capillary, a low conductivity background electrolyte (BGE) and a capacitively coupled contactless conductivity detector (C4D) were employed. This detection system is highly sensitive and enables detection of inorganic as well as organic ions unlike with direct UV detection. Moreover, to be able to simultaneously analyze the cationic drug (labetalol+) and its anionic counter-ion (Cl) in the same electrophoretic run without the need of a coated capillary, a dual-opposite end injection was performed. In this technique, the sample is hydrodynamically injected into both ends of the capillary. This method is simple and easy to perform since the different injection steps are automated by the CE software.This novel CE-C4D procedure with dual-opposite end injection has been successfully validated and applied for the analysis of chloride content in an adrenergic antagonist (labetalol hydrochloride). Thus, the hereby developed method has been shown to enable fast (analysis time < 10 min), precise (repeatability of migration times < 0.7% and of corrected-peak areas < 3.3%; n = 6) and rugged analyses for the simultaneous determination of a pharmaceutical drug and its counter-ion.  相似文献   

13.
Summary An on-line flow injection-solid-phase extraction-capillary zone electrophoresis (FI-SPE-CZE) method has been developed for determination of cimetidine in human plasma. Sodium dodecylsulfate (SDS) was used as dynamic chemical modifier for elimination of capillary contamination by biological macromolecules. FI on-line preconcentration and cleaning of the analyte by means of a C18 microcolumn was performed automatically and CZE separation was performed consecutively without interruption of the applied voltage and between-run-washing of the capillary. A detection limit of 8 μgL−1 (3×σ) was achieved at a sample throughput of 12h−1. The approach was successfully used for a pharmacokinetic study of cimetidine.  相似文献   

14.
《Electrophoresis》2017,38(3-4):533-539
In this study, an optimized method using capillary electrophoresis (CE) with a direct contactless conductivity detector (C4D) for a new application field is presented for the quantification of fluoride in common used lithium ion battery (LIB) electrolyte using LiPF6 in organic carbonate solvents and in ionic liquids (ILs) after contacted to Li metal. The method development for finding the right buffer and the suitable CE conditions for the quantification of fluoride was investigated. The results of the concentration of fluoride in different LIB electrolyte samples were compared to the results from the ion‐selective electrode (ISE). The relative standard deviations (RSDs) and recovery rates for fluoride were obtained with a very high accuracy in both methods. The results of the fluoride concentration in the LIB electrolytes were in very good agreement for both methods. In addition, the limit of detection (LOD) and limit of quantification (LOQ) values were determined for the CE method. The CE method has been applied also for the quantification of fluoride in ILs. In the fresh IL sample, the concentration of fluoride was under the LOD. Another sample of the IL mixed with Li metal has been investigated as well. It was possible to quantify the fluoride concentration in this sample.  相似文献   

15.
Summary A novel method for the determination of N-acetylneuraminic acid (NANA) and N-glycolylneuraminic acid (NGNA) has been developed using high-performance capillary electrophoresis with UV detection at 195 nm, without pre or post-column derivatisation. The acids were separated in a 50-cm, fused-silica capillary (50μ i.d, 45.5-cm effective length) with Na2B4O7−Na2HPO4 buffer. The detection limit for NANA is a concentration of 9.6×10−6 M or, in terms of mass:3.879×10−14 mol (39 fmol). This method is applicable to determination of NANA in normal human serum. The results were also compared with those of the colorimetrie method.  相似文献   

16.
Branched chain amino acids (BCAAs), alanine and glutamine are determined in human plasma by capillary electrophoresis with contactless conductivity detection (CE/C4D). The baseline separation of five amino acids from other plasma components is achieved on the short capillary effective length of 18 cm in 3.2 mol/L acetic acid with addition of 13% v/v methanol as background electrolyte. Migration times range from 2.01 min for valine to 2.84 min for glutamine, and LODs for untreated plasma are in the interval 0.7–0.9 μmol/L. Sample treatment is based on the addition of acetonitrile to only 15 μL of plasma and supernatant is directly subjected to CE/C4D. Circulating amino acids are measured in patients with pancreatic cancer and cancer cachexia during oral glucose tolerance test. It is shown that patients with pancreatic cancer and cancer cachexia syndrome exhibit low basal circulating BCAAs and glutamine levels and loss of their insulin-dependent suppression.  相似文献   

17.
Shen D  Li D  Yang X  Zhu Y  Dong J  Kang Q 《Talanta》2011,84(1):42-48
Poly(glycidyl methacrylate) cation exchange monolithic column was prepared in fused-silica capillaries of 320 μm i.d. by thermally initiated radical polymerization and utilized in capillary ion chromatography. With 15 mM methanesulfonic acid as the mobile phase, the separations of a mixture of inorganic cations (Li+, Na+, NH4+, K+) was tested by using a capacitively coupled contactless conductivity detector (C4D) and a low impedance C4D (LIC4D). The LIC4D is the series combination of a C4D and a quartz crystal resonator. At the resonant frequency of the series combination, the capacitor impedance from capillary wall was offset by the inductance impedance from the quartz crystal resonator. A minimum impedance was obtained in the impedance-frequency curve of the combination. The responses of the C4D and LIC4D were analyzed based on an equivalent circuit model. It was shown that the sensitivity of the C4D to the change in analyte concentration is rather poor due to the high ratio of the impedance from the capillary wall capacitor to the solution impedance. The LIC4D has the similar sensitivity as a contact conductivity detector but a much smaller cell volume. The on-column detection model was realized by LiC4D without preparation of optical detection window in monolithic column.  相似文献   

18.
A rapid and universal capillary zone electrophoresis (CZE) method was developed to determine the dissociation constants (pK a) of the 20 standard proteogenic amino acids. Since some amino acids are poorly detected by UV, capacitively coupled contactless conductivity detection (C4D) was used as an additional detection mode. The C4D coupling proved to be very successful on a conventional CE-UV instrument, neither inducing supplementary analyses nor instrument modification. In order to reduce the analysis time for pK a determination, two strategies were applied: (i) a short-end injection to reduce the effective length, and (ii) a dynamic coating procedure to generate a large electroosmotic flow (EOF), even at pH values as low as 1.5. As a result, the analysis time per amino acid was less than 2 h, using 22 optimized buffers covering a pH range from 1.5 to 12.0 at a constant ionic strength of 50 mM. pK a values were calculated using an appropriate mathematical model describing the relationship between effective mobility and pH. The obtained pK a values were in accordance with the literature. Figure a UV (1) and C4D (2) detectors placed on-line on the CE capillary. b Curve of effective mobility as a function of pH for histidine  相似文献   

19.
Summary The potential of a non-aqueous, capillary electrophoresis (NACE) system for separating oxytetracycline from three of its impurities—tetracycline, 4-epioxytetracycline and 4-epitetracycline—using UV detection has been studied. The running buffer was: 25 mM sodium acetate, 1 mM EDTA, methanesulfonic acid, pH 4, dissolved in MeOH-ACN (50∶50,v/v). The method was also used to determine these compounds in pig plasma. A solid-phase extraction (SPE) procedure as a clean-up step has also developed. For this we tested Sep Pak C18, LiChrolut EN and OASIS cartridges. OASIS cartridges were best. Recoveries were 90–100% for all compounds except EOTC which had a recovery of 74%.  相似文献   

20.
将在线富集技术同二维(2D)毛细管电泳(CE)分离相结合同时提高复杂样品中痕量组分的分离度和检测灵敏度.毛细管区带电泳(CZE)作为第一维,分析物根据淌度不同进行分离,第一维流出组分进入第二维毛细管,根据分配系数不同进行胶束电动毛细管色谱(MEKC)分离.采用阳离子选择性耗尽进样(CSEI)在柱预富集,延长进样时间,增大进样量;同时在二维毛细管接口处采用动态pH联接/胶束扫集在线富集技术不仅避免第一维分离组分在接口处扩散,还可进一步压缩样品区带.同常规电动进样CE分离相比,该在线富集二维分离技术的分离能力远远高于一维CZE或MEKC分离,富集倍数达到(0.5~1.2)×104.该法成功应用于人体尿样中四种药物及对映体的分析测定,浓度检出限为0.1~0.3μg/L.进一步研究了人体尿样中四种药物24h内的药代动力学规律.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号