首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Continuous flow chemical hydride generation coupled directly to a 40 W, atmospheric pressure, 2.45 GHz microwave microstrip Ar plasma operated inside a capillary channel in a sapphire wafer has been optimized for the emission spectrometric determination of As and Sb. The effect of the NaBH4 concentration, the concentration of HCl, HNO3 and H2SO4 used for sample acidification, the Ar flow rate, the reagent flow rates, the liquid volume in the separator as well as the presence of interfering metals such as Fe, Cu, Ni, Co, Zn, Cd, Mn, Pb and Cr, was investigated in detail. A considerable influence of Fe(III) (enhancement of up to 50 %) for As(V) and of Fe(III), Cu(II) and Cr(III) (suppression of up to 75%) as well as of Cd(II) and Mn(II) (suppression by up to 25%) for Sb(III) was found to occur, which did not change by more than a factor of 2 in the concentration range of 2–20 μg ml− 1. The microstrip plasma tolerated the introduction of 4.2 ml min− 1 of H2 in the Ar working gas, which corresponded to an H2/Ar ratio of 28%. Under these conditions, the excitation temperature as measured with Ar atom lines and the electron number density as determined from the Stark broadening of the Hβ line was of the order of 5500 K and 1.50 · 1014 cm− 3, respectively. Detection limits (3σ) of 18 ng ml− 1 for As and 31 ng ml− 1 for Sb were found and the calibration curves were linear over 2 orders of magnitude. With the procedure developed As and Sb could be determined at the 45 and 6.4 μg ml− 1 level in a galvanic bath solution containing 2.5% of NiSO4. Additionally, As was determined in a coal fly ash reference material (NIST SRM 1633a) with a certified concentration of As of 145 ± 15 μg g− 1 and a value of 144 ± 4 μg g− 1 was found.  相似文献   

2.
The performance of a microwave plasma torch (MPT) discharge atomic emission spectrometry (AES) system directly coupled with hydride generation (HG) for the determination of As and Sb has been studied. The argon MPT system can sustain a stable plasma over a wide range of carrier and support gas flow rates with optimum performance at 250 and 1450 ml min−1, respectively. The presence of trace amount of water in the MPT discharge is found to affect the detection limits and the signal to noise ratio. A PTFE membrane separator is applied for hydride introduction and water rejection. In addition, the membrane cell separator also improves the signal to noise ratio by serving as a pressure buffer to minimize noise due to pressure fluctuation. Detection limits (3σ) of 8.1 and 3.2 ng ml−1 are obtained with the analytical lines As I 228.812 nm and Sb I 259.809 nm, respectively at an MPT power of 135 W. The detection limits are improved when a concentrated sulfuric acid cell is placed after the membrane cell to further remove water. This double cell system yields detection limits of 5.3 and 2.1 ng ml−1 for As and Sb, respectively under the same operating conditions. Linear dynamic ranges of three orders of magnitude could be obtained.  相似文献   

3.
The stability and analytical figures of merit of argon microwave induced plasma (MIP) discharges in a surfatron as sources for optical emission spectrometry (OES) are described. These MIPs have been used for the determination of arsenic after hydride generation. They could cope with the excess of hydrogen developed during the hydride generation step and thus not necessitated an isolation of the hydrides before releasing them into the MIP. Two methods for the generation of the volatile AsH3 were applied. First a micro method was used with solid NaBH4 on which 10 1 of the acidified sample solution is transferred. Its capabilities were compared to those of continuous hydride generation using a 5% (w/w) NaBH4-solution and continuous liquid removal in a flow cell. Both methods were optimized for an argon MIP operated at a power of 120–160 W and gas flows of 20 l/h Ar. In the case of solid NaBH4 the detection limit for As has been found to be 1.0 g/ml (10 ng) and with the flow cell hydride generation 50 ng/ml. The calibration curves are linear over three orders of magnitude. Interferences caused by Sb, Fe, Sn and NaCl were investigated. No interferences occurred for Sb up to an interferent concentration of 250 g/ml. The presence of Fe causes a significant depression of the As signal whereas an increase of the As signal was observed in the case of Sn. High NaCl concentrations did not influence the As signals when using continuous hydride generation, but had a great influence when using solid NaBH4.  相似文献   

4.
A separation method utilizing a synthetic zeolite (mordenite) was developed in order to eliminate the gas phase interference of Sb(III) on As(III) during quartz furnace hydride generation atomic absorption spectrometric (HGAAS) determination. The efficiency of the proposed separation method in the reduction of suppression effects of transition metal ions on As(III) signal was also investigated. Among the volatile hydride-forming elements and their different oxidation states tested (Sb(III), Sb(V), Se(IV), Se(VI), Te(IV), and Te(VI)), only Sb(III) was found to have a signal depression effect even at low (μg l−1) concentrations under the experimental conditions employed. It has been shown that mordenite adsorbs Sb(III) quantitatively, even at a concentration of 1000 μg l−1, at pHs greater than two, and also, it reduces the initial concentrations of the transition metal ions to lower levels which can be tolerated in many studies. The adsorption of Sb(III) on mordenite follows the Freundlich isotherm and is endothermic in nature.  相似文献   

5.
A 2.45 GHz low power microwave microstrip plasma (MSP) exiting the wafer and operated with Ar at atmospheric pressure was used for the optical emission spectrometric determination of Hg with the aid of a miniaturized optical fiber spectrometer with a CCD detector and the cold vapor (CV) generation technique using NaBH4 and SnCl2 as reductants. The experimental conditions were optimized with respect to the relative intensity of the Hg I 253.6 nm line and its signal-to-background intensity ratio (SBR). So as to understand the results of the optimization experiments, the excitation temperatures as measured from Ar I lines (T exc) and the electron number densities (n e) for the Ar MSP loaded with Hg vapors were determined and found to be in the range from 5500 to 6300 K and from 1.4 to 2.0 × 1014 cm−3, respectively. Under the optimized conditions, the detection limit for Hg of the CV-MSP-OES using SnCl2 as the reducing agent was found to be much lower (0.11 ng mL−1) than in the case where NaBH4 was used (9 ng mL−1). The linearity range was found to be up to 1 μg mL−1 while the precision was of the order of 0.7–5%. The procedure with SnCl2 as reductant was used for the determination of Hg at a concentration of 0.2 μg mL−1 in synthetic water samples containing 1 to 4% (m/v) of NaCl with an accuracy of 3% as well as in a solution of the domestic sludge standard reference material (NIST SRM 2781) with a certified concentration for Hg of 3.64 ± 0.25 μg g−1 for which 3.55 ± 0.41 μg g−1 was found. Correspondence: J. A. C. Broekaert, Institut für Anorganische und Angewandte Chemie, Universit?t Hamburg, 20146 Hamburg, Germany  相似文献   

6.
Hydride generation inductively coupled plasma optical emission spectrometry (HG-ICP-OES) was used in the determination of As and Sb concentrations in fly ash samples. The effect of sample pre-treatment reagents and measurement parameters used for hydride generation was evaluated. Due to memory effects observed, the appropriate read delay time was adjusted to 60 s resulting in RSDs 0.6% and 2.3% for As and Sb, respectively. The most suitable volumes of pre-reduction reagents for 10 mL of sample were 4 mL of KI/ascorbic acid (5%) and 6 mL of HCl (conc.). The determination of Sb was significantly interfered by HF, but the interference could be eliminated by adding 2 mL of saturated boric acid and heating the samples to 60 °C at least 45 min. The accuracy of the method was studied by analyses of SRM 1633b and two fly ash samples with the recovery test of added As and Sb. As high a recovery as 96% for SRM 1633b was reached for As using 193.696 nm with two-step ultrasound-assisted digestion. A recovery rate of 103% was obtained for Sb using 217.582 nm and the pre-reduction method with the addition of 2 mL of saturated boric acid and heating. The quantification limits for the determination of As and Sb in the fly ash samples using two-step ultrasound-assisted digestion followed with HG-ICP-OES were 0.89 and 1.37 mg kg−1, respectively.  相似文献   

7.
A continuous flow thin layer electrolysis cell with a Pt cathode in combination with a microwave plasma torch operated with Ar as working gas was used for the optical emission spectrometric determination of As with the hydride technique. Under the optimised conditions the limit of detection (3σ) in the case of the As(I) 228.81 nm emission line was 81 ng mL?1. Especially the influence of the transition metals Cu(II), Fe(III) and Ni(II), of the hydride forming elements Sb(III), Se(IV) and Sn(II) and of Na on the determination of As was studied. Cu(II) was found to be the strongest interferent, as in the presence of 100 µg mL?1 of Cu(II) the signal for 3 µg mL?1 of As was reduced to 4% of the signal without interferent. Sn(II) and Sb(III) were found to yield an increase of the signal for As. L-cysteine and KI/ascorbic acid (1 : 1) at a concentration of 2% were found effective to reduce the interferences of Cu(II), Fe(III) and Ni(II). For a solution containing 3 µg mL?1 of As and 100 µg mL?1 of Ni(II) it was shown that in the presence of L-cysteine or KI/ascorbic acid the signal for As was 99% and 94% of the one without interferent, whereas it was only 43% without masking reagents. The procedure could be used for the determination of As in a digested coal fly ash standard reference material (NIST SRM 1633a®) with a certified value of 145 ± 15 µg g?1 for As. A concentration of 131 ± 15 µg g?1 was found. Additionally, As could be determined in two process water samples from a copper refinery. It was found that the amount of As determined with ECHG-MPT-OES agrees well with the values determined by FAAS and ICP-OES at the 0.02 and 1.6 g L?1 level, respectively.  相似文献   

8.
The analytical performance of a miniature quartz trap coupled with electrochemical hydride generator for antimony determination is described. A portion of the inlet arm of the conventional quartz tube atomizer was used as an integrated trap medium for on-line preconcentration of electrochemically generated hydrides. This configuration minimizes transfer lines and connections. A thin-layer of electrochemical flow through cell was constructed. Lead and platinum foils were employed as cathode and anode materials, respectively. Experimental operation conditions for hydride generation as well as the collection and revolatilization conditions for the generated hydrides in the inlet arm of the quartz tube atomizer were optimized. Interferences of copper, nickel, iron, cobalt, arsenic, selenium, lead and tin were examined both with and without the trap. 3σ limit of detection was estimated as 0.053 μg l− 1 for a sample size of 6.0 ml collected in 120 s. The trap has provided 18 fold sensitivity improvement as compared to electrochemical hydride generation alone. The accuracy of the proposed technique was evaluated with two standard reference materials; Trace Metals in Drinking Water, Cat # CRM-TMDW and Metals on Soil/Sediment #4, IRM-008.  相似文献   

9.
Continuous flow generation of Br2, Cl2 and H2S coupled to a low-power 2.45 GHz microwave microstrip He plasma exiting from a capillary gas channel in a micro-fabricated sapphire wafer with microstrip lines has been used for the optical emission spectrometric determination of Br, Cl and S using a miniaturized optical fiber CCD spectrometer. Under optimized conditions, detection limits (3σ) of 330, 190 and 220 μg l− 1 for Br, Cl and S, respectively, under the use of the Br II 478.5 nm, Cl I 439.0 nm and S I 469.0 nm lines were obtained and the calibration curves were found to be linear over 2 orders of magnitude. In addition, when introducing CO2 and using the rotational line of the CN molecular band at 385.7 nm the detection limit for C was 4.6 μg l− 1. The procedure developed was found to be free from interferences from a number of metal cations and non-metal anions. Only the presence of CO32− and CN was found to cause severe spectral interferences as strong CN and C2 molecular bands occurred as a result of an introduction of co-generated CO2 and HCN into the plasma. With the procedure described Br, Cl and S could be determined at a concentration level of 10–30 mg l− 1 with accuracy and precision better than 2%.  相似文献   

10.
An integrated electrochemical hydride generation cell, mainly composed of three components (a gas liquid separator, a graphite tube cathode and a reticulate Pt wire anode), was laboratory constructed and employed for the detection of arsenic by coupling to atomic fluorescence spectrometry. This integrated cell was free of ion-exchange membrane and individual anolyte, with the virtues of low-cost, easy assembly and environmental-friendly. Using flow injection mode, the sample throughput could come to 120 h−1 attributed to the small dimension of the cathode chamber. The operating conditions for the electrochemical hydride generation of arsenic were investigated in detail and the potential interferences from oxygen or various ions were also evaluated. Under the optimized conditions, no obvious oxygen quenching effects were observed. The limit of detection of As (III) for the sample blank solution was 0.2 ng mL−1 (3σ) and the relative standard deviation was 3.1% for nine consecutive measurements of 5 ng mL−1 As (III) standard solution. The calibration curve was linear up to 100 ng mL−1. The accuracy of the method was verified by the determination of arsenic in the reference materials GBW08517 (Laminaria Japonica Aresch) and GBW10023 (Porphyra crispata) and the developed method was successfully applied to determine trace amounts of arsenic in edible seaweeds.  相似文献   

11.
Simultaneous determination of As and Sb by hydride generation atomic fluorescence spectrometry was developed with the dielectric barrier discharge plasma as the hydride atomizer. The low-temperature and atmospheric-pressure micro-plasma was generated in a quartz cylindrical configuration device, which was constructed by an axial internal electrode and an outer electrode surrounding outside of the tube. The optimization of the atomizer construction and parameters for hydride generation and fluorescence detection systems were carried out. Under the optimized conditions, the detection limits for As and Sb were 0.04 and 0.05 μg L−1, respectively. In addition, the applicability of the present method was confirmed by the detection of As and Sb in reference materials of quartz sandstone (GBW07106) and argillaceous limestone (GBW07108). The present work provided a new approach to exploit the miniaturized hydride generation dielectric barrier discharge atomic fluorescence spectrometry system for simultaneous multi-element determination.  相似文献   

12.
A hydride generation headspace solid phase microextraction technique has been developed in combination with optical emission spectrometry for determination of total arsenic and selenium. Hydrides were generated in a 10 mL volume septum-sealed vial and subsequently collected onto a polydimethylsiloxane/Carboxen solid phase microextraction fiber from the headspace of sample solution. After completion of the sorption, the fiber was transferred into a thermal desorption unit and the analytes were vaporized and directly introduced into argon inductively coupled plasma or helium microwave induced plasma radiation source. Experimental conditions of hydride formation reaction as well as sorption and desorption of analytes have been optimized showing the significant effect of the type of the solid phase microextraction fiber coating, the sorption time and hydrochloric acid concentration of the sample solution on analytical characteristics of the method developed. The limits of detection of arsenic and selenium were 0.1 and 0.8 ng mL− 1, respectively. The limit of detection of selenium could be improved further using biosorption with baker's yeast Saccharomyces cerevisiae for analyte preconcentration. The technique was applied for the determination of total As and Se in real samples.  相似文献   

13.
The interferences between arsenic and antimony on each other during the hydride generation atomic absorption spectrometry (HGAAS) determination of arsenic and antimony using a quartz tube atomizer (QTA) were examined. In order to eliminate or reduce such interferences by selective heat decomposition of arsine and stibine, a Pyrex adsorption U-tube trap containing glass wool was placed between the drying tube and the quartz tube atomizer. Although at 250 °C stibine decomposes and is held almost completely by the trap, arsine is also decomposed to an extent of 24% and, therefore, thermal decomposition is not useful to eliminate antimony interference on arsenic determination. The effect of coating the glass wool in the U-tube with antimony on the arsenic suppression of the antimony signal was studied. The results showed that the antimony coating in the U-tube could not hold arsenic effectively and its interference on the antimony signal could not be eliminated by this means. In the second part of the study, oxygen was supplied to the quartz tube atomizer during atomization in order to study the effect of supplying oxygen on the antimony signal and on the interference of arsenic in the antimony determination. Sensitivity was increased in the presence of oxygen and interferences of arsenic on antimony determination was decreased by about 10% when oxygen was supplied. It was also observed that the extent of interferences depended mainly on the interferent concentration rather than the analyte concentration.  相似文献   

14.
The suitability of a 2.45-GHz atmospheric pressure, low-power microwave microstrip plasma (MSP) operated with Ar and He for the determination of Hg by continuous-flow cold vapor (CV) generation, using SnCl2/HCl as the reducing agent, and optical emission spectrometry (OES) using a small CCD spectrometer was studied. The areas of stability for a discharge in the Ar and in the He MSP enclosed in a cylindrical channel in a quartz wafer were investigated. The excitation temperatures as measured for discharge gas atoms (Ar I, He I), and the electron number densities at 35–40 W and 15–400 mL min−1 were found to be at the order of 3,200–5,500 K and 0.8 × 1014–1.6 × 1014 cm−3, respectively. The relative intensity of the Hg I 253.6-nm line and the signal-to-background ratio as a function of the forward power (35–40 W) as well as of the flow rate of the working gas (15–400 mL min−1) were evaluated and discussed. For the selected measurement conditions, the Ar MSP was established to have the lower detection limit for Hg (0.6 ng mL−1) compared with the He MSP. The linearity range is up to 300 ng mL−1 and the precision is on the order of 1–3%. With the optimized CV Ar MSP-OES method a determination of Hg in spiked domestic and natural waters at concentration levels of 20–100 μg L−1 and an accuracy of 1–4% could be performed. In an NIST domestic sludge standard reference material, Hg (3.64 μg g−1) could be determined with a relative standard deviation of 4% and an agreement better than 4%.  相似文献   

15.
Five closed-vessel microwave digestion methods were compared for the accurate determination of arsenic and selenium in NIST SRM 1645 River Sediment by flow-injection hydride-generation atomic absorption spectrometric methods. The digestion methods using five different acid mixtures (HNO3/ H2SO4, HNO3/HCl04, HNO3/HCl, HNO3/HCl/HF, HNO3/H2SO4/HClO4) were all found to be reliable for the determination of the analytes. Taking into consideration the safety and suitability for the analysis of other metals, the methods based on the use ofaqua regia are recommended for closed vessel microwave digestion with pressure control. Using the quick digestion program, the presence of up to 10% organic content in soil samples did not adversely affect the closed vessel digestion and did not cause the loss of volatile analytes. After digestion, opening the vessel under an inner pressure of below 345 kPa (50 psi) had no effect on the accuracy of the results. The recommended digestion methods (HNO3/HCl and HNO3/ HCl/HF) for the reliable determination of arsenic and selenium in different sediment samples were demonstrated. The calculated detection limits (3 b ) were less than 0.030 g/g and 0.033 g/g for arsenic and selenium, respectively. All analytical results for arsenic and selenium in SRM 1645 River sediment, NRCC BCSS-1 Marine Sediment and NIES CRM Pond Sediment were within or near the certified and reported ranges, with the exception of selenium in NIES CRM No. 2 Pond Sediment.  相似文献   

16.
Zhang WB  Gan WE  Lin XQ 《Talanta》2006,68(4):1316-1321
A novel electrochemical hydride generator has been developed for the determination of As and Sb. This newly devised hydride generator is constructed from a flowing electrolytic cell, in which the tungsten wire is selected as cathode. Compared with some cathode material usually used in electrochemical hydride generator, the tungsten cathode is of better interference tolerance, corrosion-resistant and longer working time. The characteristics of the cathode material, hydride generating efficiency and interferences of concomitant have been studied in detail. The detection limits (3σ) of As and Sb in sample solution were 0.10 μg L−1 and 0.15 μg L−1, the precisions for 11 replicate measurements of 20 μg L−1 As and Sb were 1.3% and 1.7%. The electrochemical hydride generator coupled with atomic fluorescence spectrometry has been applied to the determination of total As and Sb in tobacco samples.  相似文献   

17.
A slurry sampling hydride generation (SS-HG) method for the simultaneous determination of hydride forming elements (As, Sb, Se, Sn) and Hg, without total sample digestion, has been developed using batch mode generation system coupled with microwave induced plasma optical emission spectrometry (MIP-OES) from certified biological and environmental reference materials. Slurry concentration up to 3.6% m/v (particles < 80 μm) prepared in 10% HCl containing 100 μl of decanol, by the application of ultrasonic agitation, was used with calibration by the standard addition technique. Harsh conditions were used in the slurry preparation in order to reduce the hydride forming elements to their lower oxidation states, As(III), Sb(III), Se(IV) and Sn(II) and Hg, being reduced to mercury vapor, before reacting with sodium tetrahydroborate. An ultrasonic probe was used to homogenize the slurry in the quartz cup just before its introduction into the reaction vessel. For 10 ml of slurry sample, detection limits (LOD, 3σblank, peak area) of 0.06, 0.08, 0.15, 0.12 and 0.10 μg g− 1 were obtained for As, Sb, Se, Sn and Hg, respectively. The method offers relatively good precision (RSD ranged from 9 to 12%) for slurry analysis. To test the accuracy, three certified reference materials were analyzed with the analyte concentrations mostly in the μg g− 1 level. Measured concentrations are in satisfactory agreement with certified values for the biological reference materials: NRCC LUTS-1 (lobster hepatopancreas), NRCC DOLT-2 (Dogfish Liver) and environmental reference material: NRCC PACS-1 (Marine Sediment), all adequate for slurry sampling. The method requires small amounts of reagents and reduces contamination and losses.  相似文献   

18.
采用三毛细管微型在线氢化发生技术和装置, 建立了氢化物发生-电热石英管原子吸收法测定纺织品中痕量As、 Sb的分析方法. 研究了共存离子对As、 Sb检测的干扰及消除方法. 结果表明: 该方法除Co、 Sn对As和Ni对Sb有干扰外, 其它干扰元素允许量都较大. 采用酒石酸和KI混合掩蔽剂可抑制Co、 Sn对As和Ni对 Sb的干扰. As和Sb的检出限分别为0.7和0.4 ng/L, 已用于测定纺织品中痕量As和Sb的分析.  相似文献   

19.
The direct coupling of continuous hydride generation with both Ar and He microwave induced plasmas (MIP) sustained in a surfatron has been optimized for the simultaneous determination of arsenic, antimony and selenium with atomic emission spectrometry. While a discharge tube of quartz was found suitable for the Ar plasma, the use of an Al2O3 tube led to improved performance of the He plasma. The He MIP was found to be less tolerant to the introduction of hydrogen than the Ar MIP, and correspondingly the hydride generation should be operated at a lower flow rate of 0.5% NaBH4 solution. The introduction of the H2O vapour produced during hydride generation into both discharges was found to greatly decrease the sensitivities and to degrade the measurement precision. It could be effectively removed with trapping by concentrated H2SO4. The detection limits (3σ) for As, Sb and Se are 1, 0.4 and 1 ng ml−1 with the Ar MIP, and 2, 0.3 and 6 ng ml−1 with the He MIP, respectively. The calibration curves are linear over three decades of concentration. The mutual interferences from As(III), Sb(III), Se(IV), Bi(III) and Sn(IV) were found to be negligible at interferent concentrations below 1 μg ml−1 and in most cases the tolerable interferent concentrations are up to 20 μg ml−1. The proposed method has been applied to the determination of As, Sb and Se in tea samples at μg g−1 levels.  相似文献   

20.
A new method was developed for simultaneous determination of trace arsenic and antimony in Chinese herbal medicines by hydride generation-double channel atomic fluorescence spectrometry with a Soxhlet extraction system and an n-octanol-water extraction system, respectively. The effects of analytical conditions on the fluorescence intensity were investigated and optimized. A water-dissolving and methanol-water-dissolving capability were compared. The contents of different species in five Chinese herbal medicines and their decoctions were analyzed. The concentration ratios of n-octanol-soluble As or Sb to water-soluble As or Sb were related to the kinds of medicine and the acidity of the decoction. Soxhlet extraction was found to be an effective method for plants pretreatment for determination of arsenic and antimony species in Chinese herbs; the interferences of coexisting ions were evaluated. The proposed method has the advantages of simple operation, high sensitivity and high speed, with 3σ detection limits of 0.094 μg g−1 for As(III), 0.056 μg g−1 for total As, 0.063 μg g−1 for Sb(III) and 0.019 μg g−1 for total Sb in a 1.0 g of the sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号