首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Okazawa A  Ishida T 《Inorganic chemistry》2010,49(21):10144-10147
The ground spin-state of [Cu(phpyNO)(2)(H(2)O)(2)](BF(4))(2) was switched between S(total) = 1/2 and 3/2 across 175 K. On warming, the space group was changed from P2(1)2(1)2(1) to C222(1) in a single-crystal-to-single-crystal manner, and the transient structure could be monitored by means of the crystallographic analysis. The copper-radical exchange coupling changed from 2J/k(B) = -463(3) to +312(6) K with rather small Cu-O-N-C(2py) twisting deformation on one side, while practically no distortion occurred on the other.  相似文献   

2.
3.
Thermally induced spin transitions in a family of heterospin polymer chain complexes of Cu2+ hexafluoroacetylacetonate with two pyrazole-substituted nitronyl nitroxides are studied using electron paramagnetic resonance (EPR) spectroscopy. The structural rearrangements at low temperatures induce spin transitions in exchange-coupled spin triads of nitroxide-copper(II)-nitroxide. The values of exchange interactions in spin triads of studied systems are typically on the order of tens to hundreds of inverse centimeters. The large magnitude of exchange interaction determines the specific and very informative peculiarities in EPR spectra due to the predominant population of the ground state of a spin triad and spin exchange processes. The variety of these manifestations depending on structure and magnetic properties of spin triads are described. EPR is demonstrated as an efficient tool for the characterization of spin transitions and for obtaining information on the temperature-dependent sign and value of the exchange interaction in strongly coupled spin triads.  相似文献   

4.
5.
6.
Three copper(II) complexes containing beta-cyclodextrin (betaCD) derivatives as ligands [mono-6-methylamino-6-deoxy-betaCD dithiocarbamate (CDTC), mono-6-histamino-6-deoxy-betaCD (CDHM) and mono-6-Nalpha-arginyl-6-deoxy-betaCD (CDARG)] have been studied by electron paramagnetic resonance. The spectra have been recorded at X- and S-bands and different temperatures and simulated to obtain the best set of magnetic parameters. In particular, the 300 K spectra are typical of the slow motion regime, as expected considering the high molecular weight of the ligands. Some structural characteristics of the complexes are proposed on the basis of dynamic and covalency parameters obtained from simulation.  相似文献   

7.
This paper deals with some electronic problems suggested by Malatesta. Electron spin resonance with [IrBr3(NO)(PPh3)2] shows that the electronic configuration of the paramagnetic compound is described by that of the Ir-NO moiety. Specifically the three values of g tensor components demonstrate that the unpaired electron is located in a largely comprised π* (NO) orbital, so that the electronic state of NO is similar to that of gaseous trapped NO. The overlap between Ir and NO orbitals is through the dπ (dxz or dyz) metal orbitals, with consequent bent coordination of NO ligand. In conclusion the stability of d7 configuration of Ir in this monomeric compound is due to the easy electron transfer between metal and ligand, in agreement with that described in other monomeric Ir(II) compounds.  相似文献   

8.
9.
10.
11.
In this work we present the investigation of the influence of electronic and structural variations induced by varying the N,N'-bridge on the magnetic properties of Cu(II)- bis(oxamato) complexes. For this study the complexes [Cu(opba)] (2-) ( 1, opba = o-phenylene- bis(oxamato)), [Cu(nabo)] (2-) ( 2, nabo = 2,3-naphthalene- bis(oxamato)), [Cu(acbo)] (2-) ( 3, acbo = 2,3-anthrachinone- bis(oxamato)), [Cu(pba)] (2-) ( 4, pba = propylene- bis(oxamato)), [Cu(obbo)] (2-) ( 5, obbo = o-benzyl- bis(oxamato)), and [Cu(npbo)] (2-) ( 6, npbo = 1,8-naphthalene- bis(oxamato)), and the respective structurally isomorphic Ni(II) complexes ( 8- 13) have been prepared as ( (n)Bu 4N) (+) salts. The new complex ( (n)Bu 4N) 2[Cu(R-bnbo)].2H 2O ( 7, R-bnbo = (R)-1,1'-binaphthalene-2,2'- bis(oxamato)) was synthesized and is the first chiral complex in the series of Cu(II)-bis(oxamato) complexes. The molecular structure of 7 has been determined by single crystal X-ray analysis. The Cu(II) ions of the complexes 1- 7 are eta (4)(kappa (2) N, kappa (2) O) coordinated with a more or less distorted square planar geometry for 1- 6 and a distorted tetrahedral geometry for 7. Using pulsed Electron Nuclear Double Resonance on complex 6, detailed information about the relative orientation of the hyperfine ( A) and nuclear quadrupole tensors ( Q) of the coordinating nitrogens with respect to the g tensor were obtained. Electron Paramagnetic Resonance studies in the X, Q, and W-band at variable temperatures were carried out to extract g and A values of N ligands and Cu ion for 1- 7. The hyperfine values were interpreted in terms of spin population on the corresponding atoms. The obtained trends of the spin population for the monomeric building blocks were shown to correlate to the trends obtained in the dependence of the exchange interaction of the corresponding trinuclear complexes on their geometry.  相似文献   

12.
13.
14.
EPR studies have been carried out on three copper(II) complexes of 3-amino-5-methylisoxazole(3-AMI), namely(l)Cu(3-AMI)4Cl2,(2)Cu(3-AMI)2(NO3)2and(3)Cu(3-AMI)2Br2, in polycrystalline, solution and frozen solution forms in order to elucidate the stereochemistry, metal-ligand bond nature and solute-solvent interactions. The magnitude of the spectral parameters obtained from polycrystalline samples are found to represent the approximate local copper(II) environment with the ground state dominated by the dx2-y2 orbital. The molecular species obtained in pyridine and N,N '-dimethyl formamide (DMF) solutions of Cu(3-AMI)2(NO3), and Cu(3-AMI)2Br2 are similar to the corresponding species in complexes of isoxazole and its derivatives studied earlier. But, unlike the above two complexes the spectral parameters obtained in the pyridine and DMF solutions of Cu(3-AMI)4Cl2 are characteristic of CuN4 and CuO4, chromophores respectively with strong metal-ligand σ-bonding. The 4s-character in the ground state is estimated in all the complexes to indicate the axial field strength.  相似文献   

15.
Zeolite rho was synthesized and Pd(II) exchanged into it. Pd(II) was reduced to paramagnetic Pd(1) by a thermal activation process. The interactions of Pd(I) in zeolite H-rho with oxygen, water, methanol, ammonia, carbon monoxide and ethylene have been studied by electron spin resonance (ESR) and electron spin echo modulation (ESEM) spectroscopies. The ESR spectrum of an activated sample shows the formation of one Pd(I) species. Pd(I) interacts with water vapor or molecular oxygen to form Pd(II)–O2, indicating decomposition of water. Equilibration with methanol results in a broad isotropic ESR signal which is attributed to the formation of small palladium clusters. ESEM shows that the Pd clusters coordinate one molecule of methanol. Adsorption of ammonia produces a Pd(I) complex containing four molecules of ammonia based upon resolved nitrogen superhyperfine coupling. Adsorption of carbon monoxide results in a Pd(I) complex containing two molecules of carbon monoxide based upon resolved13C superhyperfine coupling. ESR and ESEM results indicate that exposure to ethylene leads to two new Pd(I) species each of which coordinates one molecule of ethylene.  相似文献   

16.
Electron paramagnetic resonance (EPR) spectra of powder and oriented films of montmorillonite, hectorite, and saponite intercalated with [Cu(cyclam)](2+) (cyclam = 1,4,8,11-tetraazacyclotetradecane) exhibit three components: an orientation-dependent component without hyperfine features, an orientation-dependent component with hyperfine features, and an orientation-independent component without hyperfine feature. EPR spectra of [Cu(cyclam)](2+)-saponite, which exhibit only two components and the best resolved hyperfine features, were simulated. The spectra indicate that a large portion of the saponite platelets are inclined to the glass surface, although they tend to align with their basal planes parallel to the glass surface. The orientation-dependent spectra could be simulated by introducing a Gaussian distribution with a standard deviation of 20 degrees for the inclination angle. The standard deviation may be used as a disorder parameter for the microcrystals assembled on glass plates. Spectral simulation also shows that the CuN(4) plane of [Cu(cyclam)](2+) is parallel to the clay layers. EPR spectra of some other partially oriented systems are also discussed.  相似文献   

17.
3,4,5-Trimetoxytetraphenylporphyrinoxovanadium (IV) complex (3,4,5-TMVOTPP) was synthesized by a new one pot synthetic method. The complex was studied in the form of single crystal, powder (polycrystalline state), solution and frozen solution (glassy state) by electron paramagnetic resonance (EPR) between room temperature (RT) and liquid nitrogen temperature (LNT). Interestingly a well-resolved octet in the EPR spectrum at RT is observed in the pure paramagnetic state of the crystal. This observation is attributed to a greatly reduced dipolar interaction between paramagnetic vanadyl ions due to the large size of the molecule and the resultant stacking in the crystalline state. The line width of the EPR signals in single crystal at RT is approximately 3.3 mT which is more than the usual line width in diluted paramagnets ( approximately 1.5 mT) and is attributed to some kind of broadening effect akin to slow motion broadening. The line width in solvents is more than the crystal value but decreases appreciably at low temperatures. The decrease in line width at low temperature is attributed to the increase in spin-lattice-relaxation time and quenching of RT broadening motion. Only one octet is observed in the crystal EPR spectra which suggests only one formula unit per unit cell or a parallel/antiparallel ordering of V=O vectors in case the formula units per unit cell are more than one. This result needs verification by a detailed X-ray investigation. The crystalline field symmetry around the V(4+) metal ion is revealed to be axial by the observed angular dependence of the EPR spectrum and the powder EPR spectrum. No super hyperfine splitting of the hyperfine lines of the vanadyl ion is observed in solid state or diluted glass up to liquid nitrogen temperature. This suggests an expected weak in-plane pi-bonding with ligands. The spin Hamiltonian parameters for vanadyl ion in crystal, powder, diluted solutions and frozen glasses are evaluated and discussed.  相似文献   

18.
High-field electron paramagnetic resonance spectra were collected at several frequencies for a single crystal of [Zn3.91Ni0.09(hmp)4(dmb)4Cl4] (1), where dmb is 3,3-dimethyl-1-butanol and hmp- is the monoanion of 2-hydroxymethylpyridine. This crystal is isostructural to [Ni4(hmp)4(dmb)4Cl4] (2), which has been characterized to be a single-molecule magnet (SMM) with fast quantum tunneling of its magnetization (QTM). The single Ni(II) ion zero-field-splitting (zfs) parameters Di [= -5.30(5) cm(-1)] and Ei [= +/-1.20(2) cm(-1)] in the doped complex 1 were evaluated by rotation of a crystal in three planes. The easy-axes of magnetization associated with the single-ion zfs interactions were also found to be tilted 15 degrees away from the crystallographic c direction. This inclination provides a possible explanation for the fast QTM observed for complex 2. The single-ion zfs parameters are then related to the zfs parameters for the Ni4 molecule by irreducible tensor methods to give D = -0.69 cm(-1) for the S = 4 ground state of the SMM, where the axial zfs interaction is given by DS(Z)2.  相似文献   

19.
The electron paramagnetic resonance spectroscopy is the only method for detecting free radicals. Free radicals have an increased importance in our daily life. A small transportable EPR spectrometer is presented for the popularisation of the EPR method. The technical construction and some applications are illustrated which show the usability of the spectrometer.  相似文献   

20.
X-band (approximately 9.8 GHz) electron paramagnetic resonance (EPR) measurement at ambient temperature in three mutually perpendicular planes have been carried out on a single crystal of Cu2+ doped mixed ligand complex of Ni(II) with saccharin and nicotinamide [Ni(Nic)2(H2O)4](sac)2. The angular dependent spectra showed that the Cu2+ ion enters Ni2+ sites in the lattice and distorted local environment of Ni2+ site. The principal g and A values, covalency parameter (alpha'2), mixing coefficients (alpha and beta) and Fermi contact term (K) have been evaluated from the EPR analysis. The ground-state wave function of the Cu2+ ion has been constructed using the alpha'2, alpha and beta values. The nature of the distortion present in the lattice is obtained from the values of the mixing coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号