首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The production of 1,3-propanediol (1,3-PD) was investigated with Klebsiella pneumoniae DSM 4799 using raw glycerol without purification obtained from a biodiesel production process. Fed-batch cultures with suspended cells revealed that 1,3-PD production was more effective when utilizing raw glycerol than pure glycerol (productivity after 47 h of fermentation, 0.84 g?L?1?h?1 versus 1.51 g?L?1?h?1 with pure and raw glycerol, respectively). In addition, more than 80 g/L of 1,3-PD was produced using raw glycerol; this is the highest 1,3-PD concentration reported thus far for K. pneumoniae using raw glycerol. Repeated fed-batch fermentation with cell immobilization in a fixed-bed reactor was performed to enhance 1,3-PD production. Production of 1,3-PD increased with the cycle number (1.06 g?L?1?h?1 versus 1.61 g?L?1?h?1 at the first and fourth cycle, respectively) due to successful cell immobilization. During 46 cycles of fed-batch fermentation taking place over 1,460 h, a stable and reproducible 1,3-PD production performance was observed with both pure and raw glycerol. Based on our results, repeated fed batch with immobilized cells is an efficient fermentor configuration, and raw glycerol can be utilized to produce 1,3-PD without inhibitory effects caused by accumulated impurities.  相似文献   

2.
Glycerol metabolism is a typical biological oxidoreductive reaction. 1,3-Propanediol (1,3-PD) is the final product of the reductive branch, while acetate, succinate, lactate, 2,3-butanediol (2,3-BD), and ethanol were produced in the oxidative branch. 2,3-BD, which has similar properties of high boiling point and water solubility with 1,3-PD, not only contests the carbon flow and NADH with 1,3-PD but also serves as an obstacle for obtaining high purity 1,3-PD in downstream processes. In this study, a 2,3-BD pathway-deficient mutant of Klebsiella oxytoca ZG36 was constructed by knocking out the budA gene of the wild-type strain M5al. The results of fed-batch fermentation by ZG36 indicated that the glycerol flux and the distribution of metabolites were altered in the K. oxytoca when the 2,3-BD pathway was blocked. No 2,3-BD was produced, and the activity of α-acetolactate decarboxylase (α-ALDC) can not be detected in the fermentation processes. The indexes of the 1,3-PD titer, the conversion from glycerol to 1,3-PD, and the productivity per cell dry weight (CDW) increased by 42%, 62%, and 46%, respectively, compared with the M5al, and the yield of the byproducts also increased obviously. The assay of the enzyme activities in the oxidative branch and the reductive branch of the glycerol metabolism, as well as the intracellular redox state, exposited the results logically.  相似文献   

3.
1,3-Propanediol (1,3-PD) biosynthesis plays a key role in NADH consumption to regulate the intracellular reducing equivalent balance of Klebsiella pneumoniae. This study aimed to increase reducing equivalent for enhancing 1,3-PD production through cofermentation of glycerol and xylose. Adding xylose as cosubstrate resulted in more reducing equivalent generation and higher cell growth. In batch fermentation under microaerobic condition, the 1,3-PD concentration, conversion from glycerol, and biomass (OD(600)) relative to cofermentation were increased significantly by 9.1%, 20%, and 15.8%, respectively. The reducing equivalent (NADH) was increased by 1-3 mg/g (cell dry weight) compared with that from glycerol alone. Furthermore, 2,3-butannediol was also doubly produced as major byproduct. In fed-batch fermentation with xylose as cosubstrate, the final 1,3-PD concentration, conversion from glycerol, and productivity were improved evidently from 60.78 to 67.21 g/l, 0.52 to 0.63 mol/mol, and 1.64 to 1.82 g/l/h, respectively.  相似文献   

4.
A high-performance liquid chromatographic (HPLC) method with refractive-index detection has been developed for simultaneous analysis of glycerol, dihydroxyacetone (DHA), 3-hydroxypropionaldehyde (3-HPA), and 1,3-propanediol (1,3-PD), four key substances in the metabolic pathway for production of 1,3-PD from glycerol by microorganism fermentation. The compounds were separated on a 300 mm × 7.8 mm ion-exclusion column with a 65:35 (v/v) mixture of deionized water and acetonitrile, containing 0.0005 M H2SO4, as mobile phase. The flow rate was 0.5 mL min?1. Under these conditions the retention times of 3-HPA, DHA, glycerol, and 1,3-PD were 6.87, 14.63, 16.37, and 18.50 min, respectively. Relative standard deviations and average recoveries were between 0.42 and 0.63% and between 96.7 and 103.1%, respectively; detection limits were between 0.017 and 0.038 g L?1. The method enabled separation of these compounds.  相似文献   

5.
In this study, pumice stone (PS), which is a vastly available material in Turkey, was evaluated as an alternative immobilization material in comparison to other commercially available immobilization materials such as glass beads and polyurethane foam. All immobilized bioreactors resulted in much better 1,3-propanediol production from waste glycerol in comparison to the suspended cell culture bioreactor. It was also demonstrated that the locally available PS material is as good as the commercially available immobilization material. The maximum volumetric productivity (8.5?g?L?1?h?1) was obtained by the PS material, which is 220?% higher than the suspended cell system. Furthermore, the immobilized bioreactor system was much more robust against cell washout even at very low hydraulic retention time values.  相似文献   

6.
This study investigated the biological conversion of crude glycerol generated from a commercial biodiesel production plant as a by-product to 1,3-propanediol (1,3-PD). Statistical analysis was employed to derive a statistical model for the individual and interactive effects of glycerol, (NH4)2SO4, trace elements, pH, and cultivation time on the four objectives: 1,3-PD concentration, yield, selectivity, and productivity. Optimum conditions for each objective with its maximum value were predicted by statistical optimization, and experiments under the optimum conditions verified the predictions. In addition, by systematic analysis of the values of four objectives, optimum conditions for 1,3-PD concentration (49.8 g/L initial glycerol, 4.0 g/L of (NH4)2SO4, 2.0 mL/L of trace element, pH 7.5, and 11.2 h of cultivation time) were determined to be the global optimum culture conditions for 1,3-PD production. Under these conditions, we could achieve high 1,3-PD yield (47.4%), 1,3-PD selectivity (88.8%), and 1,3-PD productivity (2.1/g/L/h) as well as high 1,3-PD concentration (23.6 g/L).  相似文献   

7.
介孔氧化钨担载Pt催化剂上甘油氢解制备1,3-丙二醇   总被引:2,自引:0,他引:2  
刘龙杰  张艳华  王爱琴  张涛 《催化学报》2012,33(8):1257-1261
采用蒸发诱导自组装法制备了介孔氧化钨(m-WO3),担载Pt后应用于催化甘油氢解制1,3-丙二醇.结果表明,与商业氧化钨(c-WO3)相比,m-WO3具有高比表面积和易还原的优点,从而使得Pt纳米粒子高度分散于其上.在180oC和5.5MPaH2下反应12h,Pt/m-WO3催化剂上甘油转化率和1,3-丙二醇的选择性分别为18.0%和39.2%,明显高于Pt/c-WO3催化剂.  相似文献   

8.
生物柴油作为可再生的清洁能源,已在美国、欧盟等多个国家和地区推行使用。在生物柴油的生产过程中,最高可得到约10%的副产物甘油,副产物甘油的去向将成为生物柴油大规模产业化发展所面临的严峻问题。1,3-丙二醇是一种重要的化工原料,作为合成新型聚酯PTT的原料,1,3-丙二醇已引起人们的广泛关注。以生物柴油副产物甘油为原料耦合生产1,3-丙二醇,不仅解决了生物柴油副产物甘油的出路问题,同时降低了1,3-丙二醇的生产成本。本文详细介绍了生物柴油及1,3-丙二醇生产技术及联产工艺的研究进展,并对其应用前景进行了展望。  相似文献   

9.
刘宏娟  杜伟  刘德华 《化学进展》2007,19(7):1185-1189
生物柴油作为可再生的清洁能源,已在美国、欧盟等多个国家和地区推行使用.在生物柴油的生产过程中,最高可得到约10%的副产物甘油,副产物甘油的去向将成为生物柴油大规模产业化发展所面临的严峻问题.1,3-丙二醇是一种重要的化工原料,作为合成新型聚酯PTT的原料,1,3-丙二醇已引起人们的广泛关注.以生物柴油副产物甘油为原料耦合生产1,3-丙二醇,不仅解决了生物柴油副产物甘油的出路问题,同时降低了1,3-丙二醇的生产成本.本文详细介绍了生物柴油及1,3-丙二醇生产技术及联产工艺的研究进展,并对其应用前景进行了展望.  相似文献   

10.
 考察了不同溶剂中 Pt/WO3/ZrO2 催化剂催化甘油加氢制 1,3-丙二醇的反应性能. 结果表明, 质子溶剂乙醇和水有利于甘油转化为 1,3-丙二醇. 含有乙醇或水的二元混合溶剂表现出明显的溶剂组分协同效应, 使用混合溶剂时 1,3-丙二醇选择性超过使用单一溶剂, 而且混合溶剂的组成对反应性能影响很大.  相似文献   

11.
合成了原位W掺杂的多级孔SiO2纳米球材料(W-HPSN), 系统考察了W-HPSN合成过程中短链醇类共溶剂(甲醇、乙醇、正丙醇)的加入对Pt/W-HPSN催化剂甘油氢解制1,3-丙二醇(1,3-PDO)性能的影响. 与仅以水为溶剂合成的材料制备的Pt/W-HPSN-H2O催化剂相比, 加入醇类共溶剂后, 催化剂的比表面积均有不同程度的增大, 并在除1.4 nm的微孔和>2 nm的介孔以外, 在1.7 nm处出现了新的微孔结构. 在甘油氢解反应中, 加入醇类共溶剂合成的材料制备的催化剂的催化性能也更高. 在最佳的以甲醇作为共溶剂合成的Pt/W-HPSN-Me催化剂上, 甘油转化率和1,3-PDO选择性分别为88.8%和56.3%, 而Pt/W-HPSN-H2O催化剂上二者分别为64.1%和40.7%. 根据表征结果, 推测更小的Pt粒径、更多原位产生的Brønsted酸位, 有利于提高Pt/W-HPSN催化剂的催化性能. 通过对W-HPSN-Me的组成进行优化, 发现当W/Si物质的量比为1/320时, Pt/W-HPSN-Me催化剂在423 K、氢气压力4 MPa、反应时间仅为12 h的反应条件下, 甘油转化率和1,3-PDO选择性进一步提高至98.7%和58.8%, 1,3-PDO得率可达58.0%, 展示了HPSN材料作为甘油选择氢解制1,3-PDO催化剂载体的良好应用前景.  相似文献   

12.
To date, two types of glycerol dehydratases have been reported: coenzyme B12-dependent and coenzyme B12-independent glycerol dehydratases. The three-dimensional structure of the former is a dimer of αβγ heterotrimer, while that of the latter is a homodimer. Their mechanisms of reaction are typically enzymatic radical catalysis. Functional radical in both the glycerol dehydratases is the adenosyl radical. However, the adenosyl radical in the former originates from coenzyme B12 by homolytic cleavage, and that in the latter from S-adenosyl-methionine. Until some years ago, Clostridium butyricum VPI 1718 was the only microorganism known to possess B12-independent glycerol dehydratase, but since then, several other bacteria with this unique capability have been identified. This article focuses on the glycerol dehydratases and on 1,3-propanediol production from glycerol by naturally occurring and genetically engineered bacterial strains containing glycerol dehydratase.  相似文献   

13.
With the fast development of the biodiesel industry, the byproduced crude glycerol becomes excessive due to the limited demand for refined glycerol. This article provides a green and efficient route to produce acrylic acid from crude glycerol, which is a promising alternative and complement to the petroleum-based production of acrylic acid due to its economic and environmental benefits. Among all the impurities, only the alkaline metal ions in crude glycerol significantly decreased the yield of acrylic acid. After desalination of the plant crude glycerol with ion-exchange resin to remove the critical impurities, the sequential dehydration and oxidation system gave 86% acrylic acid yield, which was as high as that with pure glycerol. In addition, the system showed good thermal stability and regeneration ability after the reaction with desalted crude glycerol. Both the HPW/Cs–Nb and VMo–SiC catalysts were stable for at least 70 h. The activity and selectivity were well recovered after regeneration at the coke burning temperature of 500°C.  相似文献   

14.
以对甲苯磺酸为催化剂,油酸和1,3-丙二醇为原料合成了1,3-丙二醇油酸双酯。最佳反应条件为:油酸60 mmol,n(油酸)∶n(丙二醇)=2.1,催化剂对甲苯磺酸的用量为油酸质量的3.5%,带水剂甲苯20 mL,于160℃反应1 h。在优化反应条件下,酯化率98%,收率77%。  相似文献   

15.
成诗婕  曾杨  裴燕  范康年  乔明华  宗保宁 《化学学报》2019,77(10):1054-1062
合成了孔道平行于短轴方向的W原位掺杂的介孔SBA-15分子筛(W-s-SBA-15), 以其为载体制备了Pt/W-s-SBA-15催化剂, 考察了催化剂中Pt、W负载量变化对甘油氢解制1,3-丙二醇(1,3-PDO)性能的影响. 采用多种手段对催化剂的形貌、活性组分Pt和W的存在状态、催化剂的酸性等性质进行了系统的表征. 催化剂评价结果表明, 随着Pt、W负载量的增加, 甘油的总转化率和液相转化率(CTL)提高, 而1,3-PDO选择性呈先升高后降低的火山型变化趋势. 在Pt负载量为4.0 wt%、W/Si物质的量比为1/480的4Pt/W-s-SBA-15(1/480)催化剂上, 在433 K、H2压力4.0 MPa、反应时间24 h的条件下, 甘油氢解制1,3-PDO的得率可达49.0%. 根据表征结果, 我们发现在Pt/W-s-SBA-15催化剂上的甘油转化率与Pt活性比表面积直接相关, 而小的Pt粒径、Pt与单分散WO4之间密切的协同作用, 则有助于提高1,3-PDO的选择性.  相似文献   

16.
《Analytical letters》2012,45(7):702-713
The aim of this study was to examine the effect of selected microorganisms on mycotoxins production by molds of the genus Fusarium, namely HT-2 and T-2 toxins. Appropriate nutritive media were inoculated with test microorganisms (Rhodotorula spp., Leuconostoc spp., Pantoea agglomerans), subsequently inoculated with Fusarium molds, then incubated under various conditions. Content of Fusarium mycotoxins in individual samples was determined using HPLC/MS/MS. Separation of mycotoxins was performed on a C18 stationary phase column using gradient elution. Total analysis time was less than 20 minutes. In examining the effect of accompanying microflora on the production of HT-2 and T-2 toxins, a decrease in production of both mycotoxins was observed under various experimental conditions. Greatest inhibitory effect was observed in the presence of Pantoea agglomerans CCM 298 bacteria. It was found that the amount of HT-2 and T-2 toxins produced by the examined mold strains also depends on cultivation conditions and the nutritive medium used.  相似文献   

17.
Most biosurfactants are obtained using costly culture media and purification processes, which limits their wider industrial use. Sustainability of their production processes can be achieved, in part, by using cheap substrates found among agricultural and food wastes or byproducts. In the present study, crude glycerol, a raw material obtained from several industrial processes, was evaluated as a potential low-cost carbon source to reduce the costs of surfactin production by Bacillus subtilis #309. The culture medium containing soap-derived waste glycerol led to the best surfactin production, reaching about 2.8 g/L. To the best of our knowledge, this is the first report describing surfactin production by B. subtilis using stearin and soap wastes as carbon sources. A complete chemical characterization of surfactin analogs produced from the different waste glycerol samples was performed by liquid chromatography–mass spectrometry (LC-MS) and Fourier transform infrared spectroscopy (FTIR). Furthermore, the surfactin produced in the study exhibited good stability in a wide range of pH, salinity and temperatures, suggesting its potential for several applications in biotechnology.  相似文献   

18.
改善细胞通透性促进1,3-丙二醇生物合成   总被引:1,自引:0,他引:1  
吴敏  杨天锦  苗茂栋  倪进波 《化学学报》2009,67(18):2133-2138
克雷伯杆菌发酵生产1,3-丙二醇(1,3-PD)的过程中, 通过加入表面活性剂可改善细胞通透性, 以减少产物和副产物对细胞生长与代谢的抑制作用, 从而促进细菌生长和1,3-PD产出. 对比研究了吐温-80 (Tween-80)、曲拉通X-100 (Triton X-100)、壬基酚聚氧乙烯醚-10 (OP-10)和十六烷基三甲基溴化铵(CTAB)等对发酵中甘油脱氢酶(GDH)、1,3-丙二醇氧化还原酶(PDOR)和甘油脱水酶(GDHt)等3种关键酶活的影响. 实验表明OP-10能较好改善细胞通透性, 胞内释放核酸浓度随添加OP-10量的增加有明显提高. 低浓度的OP-10对GDH, PDOR活性及细胞生长有较好的促进作用; 发酵8~12 h时添加1.0 g•L-1的OP-10可使1,3-PD浓度和摩尔转化率有较大提高. 结合透射电镜发现非离子表面活性剂OP-10损伤膜结构, 致细胞通透性改变, 有利于充分发挥细胞内酶的催化活性, 对细菌生长和1,3-丙二醇的合成有较大促进作用.  相似文献   

19.
吴从意 《分子催化》2012,26(3):276-283
1,3丙二醇(1,3-PDO)是一种重要的化工原料,可以作为溶剂、抗冻剂、增塑剂、乳化剂、防腐剂、洗涤剂和润滑剂等[1],在食品、医药、化妆品和有机合成中有着重要应用.此外,1,3-PDO还可以作为聚酯、聚醚和聚氨酯的单体.  相似文献   

20.
The microbial production of 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae XJPD-Li under different aeration strategies were investigated. In batch fermentation, the results showed that the final concentration of 1,3-PD and yield on glycerol were 13.44 g/l and 0.73 mol/mol under the anaerobic condition (N2, 0.4 vvm), 11.55 g/l and 0.62 mol/mol without aeration, and 8.73 g/l and 0.47 mol/mol under the aerobic condition (air, 0.4 vvm), respectively. Under the aerobic condition, the yield of 1,3-PD on glycerol was the lowest, while the biomass (optical density at 650 nm) was the highest among these three conditions. In the fed-batch culture, the final concentration and the yield of 1,3-PD was 60.82 g/l and 0.61 mol/mol under the anaerobic condition (N2, 0.4 vvm), 56.43 g/l and 0.53 mol/mol without aeration, and 65.26 g/l and 0.56 mol/mol under the aerobic condition. All these three conditions had good productivities of 1,3-PD, which were 3.35 g/l·h under the anaerobic condition (N2, 0.4 vvm), 3.13 g/l·h without aeration, and 3.16 g/l·h under the aerobic condition within the initial 12 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号