首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and functional characterization of an antibiofilm exopolysaccharide (EPS) from a probiotic Enterococcus faecium MC13 were investigated. The temperature of 35 °C, pH of 6.5, and salinity of 1–2 % were found to be optimum for EPS production. The sucrose (30 g?l?1) and yeast extract (20 g?l?1) acted as suitable carbon and nitrogen sources, respectively, which strongly influenced EPS production with yield of 11.33 and 11.91 g?l?1. Based on the thin layer chromatography, EPS of E. faecium MC13 was found to be a heteropolysaccharide, composed of galactose and glucose sugar units with a molecular mass of 2.0?×?105?Da. Fourier transform infrared spectrum analysis of the EPS revealed many predominant functional groups including hydroxyl, carboxyl, and amide groups. EPS exhibited better emulsifying and flocculating activities which is relatively similar to those of commercial polysaccharides. In vitro antioxidant inspect of EPS showed lesser antioxidant activity than that of the control ascorbic acid. Thermal behavior of EPS was different from the other EPS produced by other lactic acid bacteria. In vitro antibiofilm assay of EPS exhibited significant biofilm inhibition, especially with Listeria monocytogenes. To the best of our knowledge, this is the first report on EPS of E. faecium with strong emulsifying and flocculating activities.  相似文献   

2.
The objective of this study was to evaluate the ethanol production from the sugars contained in the sugarcane bagasse hemicellulosic hydrolysate with the yeast Pichia stipitis DSM 3651. The fermentations were carried out in 250-mL Erlenmeyers with 100 mL of medium incubated at 200 rpm and 30 °C for 120 h. The medium was composed by raw (non-detoxified) hydrolysate or by hydrolysates detoxified by pH alteration followed by active charcoal adsorption or by adsorption into ion-exchange resins, all of them supplemented with yeast extract (3 g/L), malt extract (3 g/L), and peptone (5 g/L). The initial concentration of cells was 3 g/L. According to the results, the detoxification procedures removed inhibitory compounds from the hemicellulosic hydrolysate and, thus, improved the bioconversion of the sugars into ethanol. The fermentation using the non-detoxified hydrolysate led to 4.9 g/L ethanol in 120 h, with a yield of 0.20 g/g and a productivity of 0.04 g L?1 h?1. The detoxification by pH alteration and active charcoal adsorption led to 6.1 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.13 g L?1 h?1. The detoxification by adsorption into ion-exchange resins, in turn, provided 7.5 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.16 g L?1 h?1.  相似文献   

3.
Efficacy of Serratia marcescens for pigment production and biological activity was investigated. Natural substrates like sweet potato, mahua flower extract (Madhuca latifolia L.), and sesam at different concentrations were taken. As a carbon source microorganism favored potato powder was followed by sesam and mannitol, and as nitrogen source casein hydrolysate was followed by yeast and malt extract. The effect of inorganic salts on pigment production was also studied. At final optimized composition of suitable carbon, nitrogen source, and trace materials and at suitable physiological conditions, prodigiosin production was 4.8 g L?1. The isolated pigment showed antimicrobial activity against different pathogenic bacteria and fungi. Extracted pigment was characterized by spectroscopy, Fourier transform infrared (FTIR), and thin layer chromatography (TLC) which confirm production of biological compound prodigiosin. This study suggests that use of sweet potato powder and casein can be a potential alternative bioresource for commercial production of pigment prodigiosin.  相似文献   

4.
The production of 1,3-propanediol (1,3-PD) was investigated with Klebsiella pneumoniae DSM 4799 using raw glycerol without purification obtained from a biodiesel production process. Fed-batch cultures with suspended cells revealed that 1,3-PD production was more effective when utilizing raw glycerol than pure glycerol (productivity after 47 h of fermentation, 0.84 g?L?1?h?1 versus 1.51 g?L?1?h?1 with pure and raw glycerol, respectively). In addition, more than 80 g/L of 1,3-PD was produced using raw glycerol; this is the highest 1,3-PD concentration reported thus far for K. pneumoniae using raw glycerol. Repeated fed-batch fermentation with cell immobilization in a fixed-bed reactor was performed to enhance 1,3-PD production. Production of 1,3-PD increased with the cycle number (1.06 g?L?1?h?1 versus 1.61 g?L?1?h?1 at the first and fourth cycle, respectively) due to successful cell immobilization. During 46 cycles of fed-batch fermentation taking place over 1,460 h, a stable and reproducible 1,3-PD production performance was observed with both pure and raw glycerol. Based on our results, repeated fed batch with immobilized cells is an efficient fermentor configuration, and raw glycerol can be utilized to produce 1,3-PD without inhibitory effects caused by accumulated impurities.  相似文献   

5.
The aim of this work was to optimize the enzymatic hydrolysis of the cellulose fraction of cashew apple bagasse (CAB) after diluted acid (CAB-H) and alkali pretreatment (CAB-OH), and to evaluate its fermentation to ethanol using Saccharomyces cerevisiae. Glucose conversion of 82?±?2 mg/g CAB-H and 730?±?20 mg/g CAB-OH was obtained when 2% (w/v) of solid and 30 FPU/g bagasse was used during hydrolysis at 45 °C, 2-fold higher than when using 15 FPU/g bagasse, 44?±?2 mg/g CAB-H, and 450?±?50 mg/g CAB-OH, respectively. Ethanol concentration and productivity, achieved after 6 h of fermentation, were 20.0?±?0.2 g L?1 and 3.33 g L?1 h?1, respectively, when using CAB-OH hydrolyzate (initial glucose concentration of 52.4 g L?1). For CAB-H hydrolyzate (initial glucose concentration of 17.4 g L?1), ethanol concentration and productivity were 8.2?±?0.1 g L?1 and 2.7 g L?1 h?1 in 3 h, respectively. Hydrolyzates fermentation resulted in an ethanol yield of 0.38 and 0.47 g/g glucose with pretreated CAB-OH and CAB-H, respectively. Ethanol concentration and productivity, obtained using CAB-OH hydrolyzate, were close to the values obtained in the conventional ethanol fermentation of cashew apple juice or sugar cane juice.  相似文献   

6.
Xanthan gum production was studied using sugarcane broth as the raw material and batch fermentation by Xanthomonas campestris pv. campestris NRRL B-1459. The purpose of this study was to optimize the variables of sucrose, yeast extract, and ammonium nitrate concentrations and to determine the kinetic parameters of this bioreaction under optimized conditions. The effects of yeast extract and ammonium nitrate concentrations for a given sucrose concentration (12.1–37.8 g L?1) were evaluated by central composite design to maximize the conversion efficiency. In a bioreactor, the maximum conversion efficiency was achieved using 27.0 g L?1 sucrose, 2.7 g L?1 yeast extract, and 0.9 g L?1 NH4NO3. This point was assayed in a shaker and in a bioreactor to compare bioreaction parameters. These parameters were estimated by the unstructured kinetic model of Weiss and Ollis (Biotechnol Bioeng 22:859–873, 1980) to determinate the yields (Y P/S), the maximum growth specific rate (μ max), and the saturation cellular concentration (X*). The parameters of the model (μ max, X*, m, λ, α, and β) were obtained by nonlinear regression. For production of xanthan gum in a shaker, the values of μ max and Y P/S obtained were 0.119 h?1 and 0.34 g g?1, respectively, while in a bioreactor, they were 0.411 h?1 and 0.63 g g?1, respectively.  相似文献   

7.
Considerable efforts have been made to utilize agricultural and forest residues as biomass feedstock for the production of second-generation bioethanol as an alternative fuel. Fermentation utilizing strains of Zymomonas mobilis and the use of simultaneous saccharification and fermentation (SSF) process has been proposed. Statistical experimental design was used to optimize the conditions of SSF, evaluating solid content, enzymatic load, and cell concentration. The optimum conditions were found to be solid content (30%), enzymatic load (25 filter paper units/g), and cell concentration (4 g/L), resulting in a maximum ethanol concentration of 60 g/L and a volumetric productivity of 1.5 g L?1?h?1.  相似文献   

8.
Studies have been conducted on selecting yeast strains for use in fermentation for ethanol production to improve the performance of industrial plants and decrease production costs. In this paper, we study alcoholic fermentation in a fed-batch process using a Saccharomyces cerevisiae yeast strain with flocculant characteristics. Central composite design (CCD) was used to determine the optimal combination of the variables involved, with the sucrose concentration of 170 g/L, a cellular concentration in the inoculum of 40 % (v/v), and a filling time of 6 h, which resulted in a 92.20 % yield relative to the theoretical maximum yield, a productivity of 6.01 g/L h and a residual sucrose concentration of 44.33 g/L. With some changes in the process such as recirculation of medium during the fermentation process and increase in cellular concentration in the inoculum after use of the CCD was possible to reduce the residual sucrose concentration to 2.8 g/L in 9 h of fermentation and increase yield and productivity for 92.75 % and 9.26 g/L h, respectively. A model was developed to describe the inhibition of alcoholic fermentation kinetics by the substrate and the product. The maximum specific growth rate was 0.103 h?1, with K I and K s values of 109.86 and 30.24 g/L, respectively. The experimental results from the fed-batch reactor show a good fit with the proposed model, resulting in a maximum growth rate of 0.080 h?1.  相似文献   

9.
Cheese whey hydrolyzates supplemented with phenylpyruvic acid (PPA) and commercial nutrients can be efficiently metabolized by Lactobacillus plantarum CECT-221 to biosynthesize some compounds with attractive applications in the food market. The main metabolites of cell-free extracts were antimicrobial compounds such as phenyllactic acid (PLA) and lactic acid (LA). The production of PLA by L. plantarum CECT-221 was evaluated in the Man–Rogosa–Sharpe broth supplemented with two biosynthetic precursors: phenylalanine or PPA. Using 30.5 mM PPA, the microorganism increased sevenfold the concentration of PLA producing 16.4 mM PLA in 46 h. A concentration of 40 mM PPA was a threshold to avoid substrate inhibition. The biosynthesis of whey hydrolyzates as a carbon source was enhanced by fed-batch fermentation of PPA; the average productivity of PLA increased up to 45.4?±?3.02 mM after 120 h with a product yield of 0.244 mM mM?1; meanwhile, LA reached 26.1?±?1.3 g L?1 with a product yield of 0.72 g g?1. Cell-free fed-batch extracts charged in wells showed bacteriocin activity with halos of 7.49?±?1.44 mm in plates inoculated with Carnobacterium piscicola and antimicrobial activity against Staphylococcus aureus (11.54?±?1.14 mm), Pseudomonas aeruginosa (10.17?±?2.46 mm), Listeria monocytogenes (7.75?±?1.31 mm), and Salmonella enterica (3.60?±?1.52 mm). Additionally, the analysis of the volatile composition of the headspace of this cell-free extract revealed that L. plantarum is a potential producer for natural aromas, such as acetophenone, with high price in the market. This is the first report of PLA production from cheese whey and PPA. The extracts showed bacteriocin activity and potential to be applied as an antimicrobial in the elaboration of safer foods.  相似文献   

10.
The mutant strain designated as ART18, obtained from the wild-type strain Clostridium acetobutylicum PW12 treated by atmospheric and room temperature plasma, showed higher solvent tolerance and butanol production than that of the wild-type strain. The production of butanol was 11.3?±?0.5 g/L, 31 % higher than that of the wild-type strain when it was used for acetone, butanol, and ethanol fermentation in P2 medium. Furthermore, the effects of cassava flour concentration, pH regulators, and vitamins on the ABE production were also investigated. The highest butanol production of 15.8?±?0.8 g/L and butanol yield (0.31 g/g) were achieved after the above factors were optimized. When acetone, butanol, and ethanol fermentation by ART18 was carried out in a 15-L bioreactor, the butanol production, the productivity of butanol, and the total solvent were 16.3?±?0.9, 0.19, and 0.28 g/L/h, respectively. These results indicate that ART18 is a promising industrial producer in ABE fermentation.  相似文献   

11.
Fine powder of Typha latifolia L. root was used for adsorption of copper and zinc ions from buffered and nonbuffered aqueous solutions. The adsorption reached equilibrium in 60 min. During this time, more than 90 % of the adsorption process was completed. The effect of initial pH, initial concentration of metal ion, and contact time was investigated in a batch system at room temperature. The optimum adsorption performance was observed at pH 5.00 and 4.25 for nonbuffered solutions of Cu(II) and Zn(II), respectively, while for buffered solutions it occurred at pH 6.00. The total metal uptake decreased on application of ammonium acetate buffer, from 37.35 to 17.00 mg g?1 and 28.80 to 9.90 mg g?1 for Cu(II) and Zn(II) solutions, respectively, with 100 mg L?1 initial concentration. The pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models were used to describe the adsorption kinetics. The experimental data followed the pseudo-second-order kinetic model. The biosorption equilibrium was well described by Langmuir and Freundlich isotherm models.  相似文献   

12.
Ten yeast strains were evaluated concerning their capabilities to assimilate biodiesel-derived glycerol in batch cultivation. The influence of glycerol concentration, temperature, pH and yeast extract concentration on biomass production was studied for the yeast selected. Further, the effect of agitation on glycerol utilization by the yeast Hansenula anomala was also studied. The yeast H. anomala CCT 2648 showed the highest biomass yield (0.30?g?g?1) and productivity (0.19?g?L?1?h?1). Citric acid, succinic acid, acetic acid and ethanol were found as the main metabolites produced. The increase of yeast extract concentration from 1 to 3?g?L?1 resulted in high biomass production. The highest biomass concentration (21?g?L?1), yield (0.45?g?g?1) and productivity (0.31?g?L?1?h?1), as well as ribonucleotide production (13.13?mg?g?1), were observed at 700?rpm and 0.5?vvm. These results demonstrated that glycerol from biodiesel production process showed to be a feasible substrate for producing biomass and ribonucleotides by yeast species.  相似文献   

13.
With the problems related to chemical methods of pyruvic acid (PA) synthesis, a fast-growing interest has been observed in research aiming at reducing the production cost of PA by applying biotechnological methods. This study aimed to investigate the potential applicability of Yarrowia lipolytica Wratislavia 1.31 yeast strain for valorisation of pure and crude glycerol through the production of industrially desired PA. Conditions required for the effective PA biosynthesis, i.e., pH value, thiamine concentration, agitation, and substrate concentration, were examined in batch and fed-batch cultivation modes. The efficient production of PA occurred under the limitation of thiamine (1 µg L?1) and was stimulated by moderate pH (4.5) and agitation (800 rev min?1) of the culture. Under optimal conditions, Y. lipolytica Wratislavia 1.31 was able to produce 85.2 g L?1 of PA with volumetric productivity of 0.90 g L?1 h?1. The yield of PA biosynthesis reached a high level of 1.03 g g?1. Obtained results confirmed the aptitude of Y. lipolytica yeast to produce high amounts of PA from simple glycerol-containing media. Presented process was very promising and might be considered as an attractive alternative for currently used chemical methods of PA synthesis.  相似文献   

14.
The bacterium Enterobacter A47 has demonstrated the ability to synthesise distinct exopolysaccharides (EPS) as a function of the substrate used. The culture's performance was evaluated in experiments using either glucose or xylose, as single carbon sources, and compared with the substrate (glycerol) used in previous studies. The highest EPS production (13.23 g L?1) was obtained in the glucose fed assay, with a volumetric productivity of 3.38 g L?1 day?1. The use of xylose resulted in lower productivity (1.39 g L?1 day?1). The synthesised polymers have the same main sugar monomers (fucose, glucose, galactose and glucuronic acid), but their relative proportion varied with the substrate used. The acyl groups' content and composition were also affected by the substrate used. The polymers produced from glycerol (EPS-s) and glucose (EPS-g) had identical shear-thinning behaviour and good emulsion-stabilising capacity and their films had similar mechanical and water vapour properties. However, the emulsions stabilised with EPS-g were less stable and destabilised within short periods of time or when subjected to heat and freezing/thawing procedures. On the other hand, the polymer produced from xylose had little emulsion-stabilising capacity and lower apparent viscosity than EPS-s and EPS-g, but its films were considerably more elastic.  相似文献   

15.
This study investigated the feasibility to produce biohydrogen of a mechanically stirred anaerobic sequencing batch biofilm reactor (AnSBBR) treating sucrose-based synthetic wastewater. The bioreactor performance (30 °C) was evaluated as to the combined effect of fill time (2, 1.5, and 1 h), cycle length (4, 3, and 2 h), influent concentration (3,500 and 5,250 mg chemical oxygen demand (COD)?L?1) and applied volumetric organic load (AVOLCT from 9.0 to 27.0 g COD L?1 d?1). AVOLs were varied according to influent concentration and cycle length (t C). The results showed that increasing AVOLCT resulted in a decrease in sucrose removal from 99 to 86 % and in improvement of molar yield per removed load (MYRLS.n) from 1.02 mol H2?mol carbohydrate?1 at AVOLCT of 9.0 g COD L?1 d?1 to maximum value of 1.48 mol H2?mol carbohydrate?1, at AVOLCT of 18.0 g COD L?1 d?1, with subsequent decrease. Increasing AVOLCT improved the daily molar productivity of hydrogen (MPr) from 15.28 to 49.22 mol H2?m?3 d?1. The highest daily specific molar productivity of hydrogen (SMPr) obtained was 8.71 mol H2?kg TVS?1 d?1 at an AVOLCT of 18.0 g COD L?1 d?1. Decreasing t C from 4 to 3 h decreased sucrose removal, increased MPr, and improved SMPr. Increasing influent concentration decreased sucrose removal only at t C of 2 h, improved MYRLS,n and MPr at all t C, and also improved SMPr at t C of 4 and 3 h. Feeding strategy had a significant effect on biohydrogen production; increasing fill time improved sucrose removal, MPr, SMPr, and MYRLS,n for all investigated AVOLCT. At all operational conditions, the main intermediate metabolic was acetic acid followed by ethanol, butyric, and propionic acids. Increasing fill time resulted in a decrease in ethanol concentration.  相似文献   

16.
The metabolism of residual glycerol from biodiesel synthesis by Klebsiella pneumoniae BLh-1 was investigated in this study. Batch and fed-batch cultivations were performed in bioreactors under anaerobic and oxygen limitation conditions. Results of batch cultivations showed that the main product was 1,3-propanediol (1,3-PD) in both conditions, although the higher yields and productivities (0.46 mol mol?1 glycerol and 1.22 g?L?1?h?1, respectively) were obtained under anaerobic condition. Large amounts of ethanol were also produced under batch anaerobic condition, peaking at 12.30 g?L?1. Batch cultivations under oxygen limitation were characterized by faster growth kinetics, with higher biomass production but lower conversions of glycerol into 1,3-PD, with yields and productivities of 0.33 mol mol?1 glycerol and 0.99 g?L?1?h?1, respectively. The fed-batch cultivations were carried out in order to investigate the effects of feeding of raw glycerol on cells. Fed-batch under anaerobiosis showed that 1,3-PD and ethanol concentrations increased with the feeding rate, with maximal productions of 26.12 and 19.2 g?L?1, respectively. The oxygen limitation conditions diverted the bacterium metabolism to an elevated lactic acid formation, reaching 59 g?L?1 in higher feeding rates of glycerol, but lowering the production of ethanol.  相似文献   

17.
Tasiu Isah 《Chemical Papers》2017,71(6):1091-1106
The biotechnological approach of in vitro cultures elicitation offers an alternative strategy for the production of camptothecin (CPT) in Nothapodytes nimmoniana to mitigate indiscriminate harvest of the endangered natural population for the alkaloid. Yeast extract (YE) and vanadyl sulfate (VS) elicitors were used to enhance the biosynthesis of CPT in hypocotyl-derived callus cultures of N. nimmoniana by cultivation using solid and liquid Murashige and Skoog (MS) medium amended with NAA + BAP (2.0 + 1.0 mg L?1). Effects of the two elicitors on biomass and CPT production at 6.25, 12.5, 25, 50 and 75 mg L?1 concentrations using callus cultures from three cell lines were evaluated after 15, 30 and 45 days culture. Yeast extract elicitor treatments showed a linear enhancement effect on biomass and CPT production up to 50 mg L?1 YE and beyond the concentrations, no significant effect was observed. Enhanced biomass and CPT production were achieved with VS elicitor up to 25 mg L?1 concentrations but, 50 and 75 mg L?1 VS had minimal effects on biomass and CPT production in callus sources and incubation duration-dependent manner. The intracellular yield of CPT in liquid media-cultivated cultures at concentrations of the two elicitors was lower when compared to solid media treatments relative control due to the extracellular accumulation but, higher overall production. Accumulation of the biomass showed association with produced CPT in the elicitor treatments and control cultures.  相似文献   

18.
An anaerobic sequencing batch reactor containing immobilized biomass (AnSBBR) was used to produce biomethane by treating the effluent from another AnSBBR used to produce biohydrogen from glucose- (AR-EPHG) and sucrose-based (AR-EPHS) wastewater. In addition, biomethane was also produced from sucrose-based synthetic wastewater (AR-S) in a single AnSBBR to compare the performance of biomethane production in two steps (acidogenic and methanogenic) in relation to a one-step operation. The system was operated at 30 °C and at a fixed stirring rate of 300 rpm. For AR-EPHS treatment, concentrations were 1,000, 2,000, 3,000, and 4,000 mg chemical oxygen demand?(COD)?L?1 and cycle lengths were 6 and 8 h. The applied volumetric organic loads were 2.15, 4.74, 5.44, and 8.22 g COD L?1 day?1. For AR-EPHG treatment, concentration of 4,000 mg COD L?1 and 4-h cycle length (7.21 g COD L?1 day?1) were used. For AR-S treatment, concentration was 4,000 mg COD L?1 day?1 and cycle lengths were 8 (7.04 g COD L?1 day?1) and 12 h (4.76 g COD L?1 day?1). The condition of 8.22 g COD L?1 day?1 (AR-EPHS) showed the best performance with respect to the following parameters: applied volumetric organic load of 7.56 g COD L?1 day?1, yield between produced methane and removed organic material of 0.016 mol CH4?g COD?1, CH4 content in the produced biogas of 85 %, and molar methane productivity of 127.9 mol CH4?m?3 day?1. In addition, a kinetic study of the process confirmed the trend that, depending on the biodegradability characteristics of the wastewaters used, the two-step treatment (acidogenic for biohydrogen production and methanogenic for biomethane production) has potential advantages over the single-step process.  相似文献   

19.
Cells of Aspergillus terreus, free and immobilized in polyurethane foam, were employed in itaconic acid fermentation processes on glycerol-based media. The purpose was to assess their suitability for animal bone char solubilization and the development of a biotechnological alternative to P fertilizers chemically produced from rock phosphate. Animal bones constitute a renewable source of P that can replace the traditionally used finite, nonrenewable rock phosphate as a P source. Glycerol was an excellent substrate for growth (10.2 g biomass L?1) and itaconic acid production (26.9 g?L?1) by free fungal cells after 120-h fermentation. Simultaneously, A. terreus solubilized the insoluble phosphate to a yield of 23 to 50 %, depending on the particle size and concentration. Polyurethane foam cut into cubes of 0.5–0.6 cm per side, with 0.3 mm pore size and applied at 2.0 g?L?1 proved to be an excellent cell carrier. In repeated batch fermentation, the immobilized mycelium showed a high capacity to solubilize animal bone char, which resulted on average in 168.8 mg?L–1 soluble phosphate per 48-h cycle and 59.4 % yield (percent of total phosphate) registered in the fourth batch.  相似文献   

20.
A reliable in vitro regeneration system for the economical and medicinally important Piper nigrum L. has been established. Callus and shoot regeneration was encouraged from leaf portions on Murashige and Skoog (MS) medium augmented with varied concentrations of plant growth regulators. A higher callus production (90 %) was observed in explants incubated on MS medium incorporated with 1.0 mg?L?1 6-benzyladenine (BA) along with 0.5 mg?L?1 gibberellic acid after 4 weeks of culture. Moreover, a callogenic response of 85 % was also recorded for 1.0 mg?L?1 BA in combination with 0.25 mg?L?1 α-naphthalene acetic acid (NAA) and 0.25 mg?L?1 2,4-dichlorophenoxyacetic acid or 0.5 mg?L?1 indole butyric acid (IBA) along with 0.25 mg?L?1 NAA and indole acetic acid. Subsequent sub-culturing of callus after 4 weeks of culture onto MS medium supplemented with 1.5 mg?L?1 thiodiazoran or 1.5 mg?L?1 IBA induced 100 % shoot response. Rooted plantlets were achieved on medium containing varied concentrations of auxins. The antioxidative enzyme activities [superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX)] revealed that significantly higher SOD was observed in regenerated plantlets than in other tissues. However, POD, CAT, and APX were higher in callus than in other tissues. A high-performance liquid chromatography (HPLC) fingerprint analysis protocol was established for quality control in different in vitro-regenerated tissues of P. nigrum L. During analysis, most of the common peaks represent the active principle “piperine.” The chemical contents, especially piperine, showed variation from callus culture to whole plantlet regeneration. Based on the deviation in chromatographic peaks, the in vitro-regenerated plantlets exhibit a nearly similar piperine profile to acclimated plantlets. The in vitro regeneration system and HPLC fingerprint analysis established here brought a novel approach to the quality control of in vitro plantlets, producing metabolites of interest with substantial applications for the conservation of germplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号